98%
921
2 minutes
20
Autophagy is a primary cellular mechanism that entails the degradation and recycling of impaired or redundant cellular constituents. It plays an essential role in maintaining cellular health and homeostasis. Dysfunction in autophagy has been implicated in a wide range of diseases, including cancer, cardiovascular diseases, and neurodegenerative diseases. A total of 200 fungal extracts were screened for their ability to modulate autophagy in HEK293A cells, a human kidney cell line stably expressing GFP-tagged LC3, a marker of autophagy. A potential autophagy regulator extract was identified from the freshwater-derived fungus, . Through the implementation of Feature-Based Molecular Networking (FBMN), seven cyclodepsipeptides (-) and four lactone derivatives (-) were isolated from the bioactive fractions. The chemical structure of the newly isolated compounds, arthrichitins E-H (-) and gwangjupones A-D (-), were elucidated using 1D and 2D NMR spectroscopy, Marfey's analysis, -based configuration analysis, ECD, and DP4+ probability calculations. Compounds , , and were found to stimulate autophagic flux in IMR90 cells infected with an adeno-associated virus carrying an mCherry-GFP-LC3 construct, highlighting their potential as autophagy activators.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jnatprod.4c01172 | DOI Listing |
Cell Mol Biol (Noisy-le-grand)
September 2025
Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Despite significant advancements in the treatment of non-small cell lung cancer (NSCLC) using conventional therapeutic methods, drug resistance remains a major factor contributing to disease recurrence. In this study, we aimed to explore the potential benefits of combining PI3K inhibition with Cisplatin in the context of NSCLC-derived A549 cells. Human non-small cell lung cancer A549 cells were cultured and treated with BKM120, cisplatin, or their combination.
View Article and Find Full Text PDFMol Biol Rep
September 2025
Dr. B. R. Ambedkar Centre for Biomedical Research North Campus , University of Delhi, 110007, Delhi, India.
Background: Standard treatment for glioblastoma includes chemotherapy, alkylating agents such as temozolomide (TMZ); however, MGMT resistance leads to recurrence. Demethoxycurcumin (DMC) has been reported to inhibit cancer cell growth, induce apoptosis, and prevent metastasis in different cancer models. We investigated the DMC-induced apoptosis and autophagy via inhibition of the AKT/mTOR pathway in human glioma U87MG and T98G cell lines.
View Article and Find Full Text PDFBrain
September 2025
Okinawa Institute of Science and Technology Graduate University, Okinawa, 904-0495, Japan.
Animal models of the pathology of Parkinson's disease (PD) have provided most of the treatments to date, but the disease is restricted to human patients. In vitro models using human pluripotent stem cells (hPSCs)-derived neural organoids have provided improved access to study PD etiology. This study established a method to generate human striatal-midbrain assembloids (hSMAs) from hPSCs for modeling alpha-synuclein (α-syn) propagation and recapitulating basal ganglia circuits, including nigrostriatal and striatonigral pathways.
View Article and Find Full Text PDFFront Mol Biosci
August 2025
Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, Jiangsu, China.
Introduction: Sulforaphane (SFN) is recognized for its anti-inflammatory properties; however, the underlying molecular mechanisms remain unclear. In this study, we explored the effect of SFN on subarachnoid hemorrhage (SAH) and the potential mechanisms.
Methods: Sprague-Dawley (SD) rats were divided into three groups (n = 12): Sham + vehicle group (Sham + V), SAH + vehicle group (SAH + V), and SAH + SFN group (SAH + S).
Diabetes Metab Syndr Obes
September 2025
Medical School, Kunming University of Science and Technology, Kunming, People's Republic of China.
Diabetes has emerged as a critical global health issue, with its associated complications posing a severe threat to patients' quality of life. Current research demonstrates that imbalance in mitochondrial dynamics and autophagic dysregulation play pivotal roles in the pathogenesis of diabetic complications, particularly in diabetic cardiomyopathy, nephropathy, peripheral neuropathy and retinopathy. Strategic modulation of mitochondrial function and autophagic activity represents a promising therapeutic approach for managing diabetic complications.
View Article and Find Full Text PDF