Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Animal models of the pathology of Parkinson's disease (PD) have provided most of the treatments to date, but the disease is restricted to human patients. In vitro models using human pluripotent stem cells (hPSCs)-derived neural organoids have provided improved access to study PD etiology. This study established a method to generate human striatal-midbrain assembloids (hSMAs) from hPSCs for modeling alpha-synuclein (α-syn) propagation and recapitulating basal ganglia circuits, including nigrostriatal and striatonigral pathways. Human striatal organoids and midbrain organoids were generated using a stepwise differentiation protocol from hPSCs, and both regionalized neural organoids were assembled to form hSMAs, mimicking some basal ganglia circuits. Both the nigrostriatal and striatonigral pathways were present and the neurons such as dopaminergic (DA) neurons and GABAergic neurons were electrophysiologically active in the hSMAs. hSMA development in the presence of increased α-syn from SNCA overexpression, induced nigrostriatal system damage, which is typical of the disease. Using the α-syn-linker-mKO2 reporter and a bimolecular fluorescence complementation system, we demonstrated that fluorescent α-syn was retrogradely transported from the striatal area to DA neurons of the midbrain area and exhibited α-syn aggregates and Lewy body-like inclusions. Furthermore, phosphorylated and detergent-resistant α-syn aggregates, similar to pathological form in human patients, was accumulated in midbrain area of hSMAs. Treatment with protein aggregation inhibitor (Anle138b) and autophagy inducer (Rapamycin) reduced α-syn aggregation, indicating potential of hSMAs for drug testing. This study established hSMAs as a novel platform for modeling PD, demonstrating α-syn propagation and associated neural pathologies. These assembloids offer significant potential for developing therapeutic strategies and understanding the mechanisms of PD progression.

Download full-text PDF

Source
http://dx.doi.org/10.1093/brain/awaf326DOI Listing

Publication Analysis

Top Keywords

human striatal-midbrain
8
human patients
8
neural organoids
8
study established
8
α-syn propagation
8
basal ganglia
8
ganglia circuits
8
nigrostriatal striatonigral
8
striatonigral pathways
8
midbrain area
8

Similar Publications

Animal models of the pathology of Parkinson's disease (PD) have provided most of the treatments to date, but the disease is restricted to human patients. In vitro models using human pluripotent stem cells (hPSCs)-derived neural organoids have provided improved access to study PD etiology. This study established a method to generate human striatal-midbrain assembloids (hSMAs) from hPSCs for modeling alpha-synuclein (α-syn) propagation and recapitulating basal ganglia circuits, including nigrostriatal and striatonigral pathways.

View Article and Find Full Text PDF

α-synuclein is a small protein that is mainly expressed in the synaptic terminals of nervous tissue. Although its implication in neurodegeneration is well established, the physiological role of α-synuclein remains elusive. Given its involvement in the modulation of synaptic transmission and the emerging role of microtubules at the synapse, the current study aimed at investigating whether α-synuclein becomes involved with this cytoskeletal component at the presynapse.

View Article and Find Full Text PDF

Anhedonia (hyposensitivity to rewards) and negative bias (hypersensitivity to punishments) are core features of major depressive disorder (MDD), which could stem from abnormal reinforcement learning. Emerging evidence highlights blunted reward learning and reward prediction error (RPE) signaling in the striatum in MDD, although inconsistencies exist. Preclinical studies have clarified that ventral tegmental area (VTA) neurons encode RPE and habenular neurons encode punishment prediction error (PPE), which are then transmitted to the striatum and cortex to guide goal-directed behavior.

View Article and Find Full Text PDF

Background: Inhibition of mitochondrial function occurs in many neurodegenerative diseases, and inhibitors of mitochondrial complexes I and II are used to model them. The complex II inhibitor, 3-nitroproprionic acid (3-NPA), kills the striatal neurons susceptible in Huntington's disease. The complex I inhibitor N-methyl-4-phenylpyridium (MPP(+)) and 6-hydroxydopamine (6-OHDA) are used to model Parkinson's disease.

View Article and Find Full Text PDF

Clinical and experimental observations show individual differences in the development of addiction. Increasing evidence supports the hypothesis that dopamine receptor availability in the nucleus accumbens (NAc) predisposes drug reinforcement. Here, modeling striatal-midbrain dopaminergic circuit, we propose a reinforcement learning model for addiction based on the actor-critic model of striatum.

View Article and Find Full Text PDF