A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Fibrosis-4plus score: a novel machine learning-based tool for screening high-risk varices in compensated cirrhosis (CHESS2004): an international multicenter study. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background/aims: A large percentage of patients undergoing esophagogastroduodenoscopy (EGD) screening do not have esophageal varices (EV) or have only small EV. We evaluated a large, international, multicenter cohort to develop a novel score, termed FIB-4plus, by combining the fibrosis-4 (FIB-4) score, liver stiffness measurement (LSM), and spleen stiffness measurement (SSM) to identify high-risk EV (HRV) in compensated cirrhosis.

Methods: This international cohort study involved patients with compensated cirrhosis from 17 Chinese hospitals and one Croatian institution (NCT04546360). Two-dimensional shear wave elastography-derived LSM and SSM values, and components of the FIB-4 score (i.e., age, aspartate aminotransferase, alanine aminotransferase, and platelet count [PLT]) were combined using machine learning algorithms (logistic regression [LR] and extreme gradient boosting [XGBoost]) to develop the LR-FIB-4plus and XGBoost-FIB-4plus models, respectively. Shapley Additive exPlanations method was used to interpret the model predictions.

Results: We analyzed data from 502 patients with compensated cirrhosis who underwent EGD screening. The XGBoost-FIB-4plus score demonstrated superior predictive performance for HRV, with an area under the receiver operating characteristic curve (AUROC) of 0.927 (95% confidence interval [CI] 0.897-0.957) in the training cohort (n=268), and 0.919 (95% CI 0.843-0.995) and 0.902 (95% CI 0.820-0.984) in the first (n=118) and second (n=82) external validation cohorts, respectively. Additionally, the XGBoost-FIB-4plus score exhibited high AUROC values for predicting EV across all cohorts. The FIB-4plus score outperformed the individual parameters (LSM, SSM, PLT, and FIB-4).

Conclusion: The FIB-4plus score effectively predicted EV and HRV in patients with compensated cirrhosis, providing clinicians with a valuable tool for optimizing patient management and outcomes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12260638PMC
http://dx.doi.org/10.3350/cmh.2024.0898DOI Listing

Publication Analysis

Top Keywords

compensated cirrhosis
16
patients compensated
12
international multicenter
8
egd screening
8
fib-4 score
8
stiffness measurement
8
lsm ssm
8
xgboost-fib-4plus score
8
fib-4plus score
8
score
7

Similar Publications