HACE1 protects against myocardial ischemia-reperfusion injury via inhibition of mitochondrial fission in mice.

BMC Cardiovasc Disord

Department of Cardiology, Liaocheng People's Hospital, Shandong University, Liaocheng, Shandong, 252000, P.R. China.

Published: February 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: HECT domain and Ankyrin repeat Containing E3 ubiquitin-protein ligase 1 (HACE1) has been found to be associated with mitochondrial protection. Mitochondrial damage is a critical contributor to myocardial ischemia-reperfusion injury (I/RI). However, little is known about the role of HACE1 in the pathogenesis of myocardial I/RI.

Methods: Male C57BL6 mice with HACE1 knockout (KO) were subjected to 30 min of ischemia via ligation of the left anterior descending artery, followed by 0, 2, 6, or 24 h of reperfusion. The mice were evaluated for myocardial histopathological injury, serum troponin I (cTnI) levels, oxidative stress injury, apoptosis and cardiac function. Prior to ischemia, Mdivi-1(1.2 mg/kg) or vehicle was administered.

Results: The study revealed that increased expression of HACE1 was associated with myocardial ischemia/reperfusion injury (I/RI), and that knockout of HACE1 resulted in more severe myocardial damage and cardiac dysfunction during I/R(P < 0.05). The HACE1 knockout group exhibited higher levels of malondialdehyde (MDA), greater mitochondrial fission, and dissipation of mitochondrial membrane potential (MMP), leading to more apoptosis and severe cardiac dysfunction compared to the wild-type I/R group(P < 0.05). On the other hand, HACE1 knockout further reduced superoxide dismutase (SOD) activity in the myocardium(P < 0.05), further supporting the findings. However, the adverse effects were almost completely eliminated by pharmacological blockade of the dynamin-related protein 1 (Drp1) inhibitor, Mdivi-1, which inhibits mitochondrial fission during cardiac I/R(P < 0.05).

Conclusion: Collectively, our data show that myocardial I/RI is associated with HACE1 downregulation and Drp1 activation, causing cardiomyocytes to undergo cell death. Therefore, HACE1 could be a promising therapeutic target for the treatment of myocardial I/RI.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11792395PMC
http://dx.doi.org/10.1186/s12872-024-04445-2DOI Listing

Publication Analysis

Top Keywords

myocardial ischemia-reperfusion
8
ischemia-reperfusion injury
8
hace1 associated
8
injury i/ri
8
hace1
6
myocardial
6
injury
5
hace1 protects
4
protects myocardial
4
injury inhibition
4

Similar Publications

Background: Cardiac ischemia reperfusion (I/R) injury is a serious consequence of reperfusion therapy for myocardial infarction (MI). Peptidylarginine deiminase 4 (PAD4) is a calcium-dependent enzyme that catalyzes the citrullination of proteins. In previous studies, PAD4 inhibition protected distinct organs from I/R injury by preventing the formation of neutrophil extracellular traps (NETs) and attenuating inflammatory responses.

View Article and Find Full Text PDF

Background: The protective function of the tetrandrine (TET)-mediated transient receptor potential vanilloid 2 (TRPV2) channel in myocardial ischemia/reperfusion injury (MI/RI) has been established in numerous investigations. The objective of the current study was to explain how TRPV2 further modulates downstream factors to influence the progression of MI/RI.

Methods: To this end, an MI/RI model in rats and a hypoxia-reoxygenation (H/R) cell model in H9c2 cells were constructed.

View Article and Find Full Text PDF

Notoginsenoside R1 (NGR1), a natural triterpenoid saponin, is extracted from , and has cardiovascular and cerebrovascular protective effects due to anti-inflammatory, anti-oxidant, and anti-apoptotic properties. Previous research has suggested a protective role for NGR1 in myocardial ischemia/reperfusion (MI/R) injury. However, the potential mechanisms involved have not been fully elucidated.

View Article and Find Full Text PDF

Conductive Microneedle Patch with Mitochondria-Localized Generation of Nitric Oxide Promotes Heart Repair after Ischemia-Reperfusion Therapy.

Small Methods

September 2025

Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science, Shanghai University, Nantong, 226011, China.

Timely blood resupply is a clinical strategy to treat myocardial infarction, which unavoidably causes myocardial ischemia-reperfusion injury. With disturbed electrical conduction and oxidative stress in infarcted myocardium, injured heart experiences a negative ventricle remodeling process, and finally leads to heart failure. Nitric oxide (NO) is a short-lived signaling molecule regulating cardiovascular homeostasis, while vasodilation of systemic vasculature is accompanied by its exogenous supplementation.

View Article and Find Full Text PDF

Numerous people experiencing acute myocardial infarction are also experiencing myocardial ischemia-reperfusion injury (MIRI). Pyroptosis is a core mechanism in MIRI. Tongxinluo (TXL) has a significant protective effect on endothelial cell function.

View Article and Find Full Text PDF