A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Prediction model for type 2 diabetes mellitus and its association with mortality using machine learning in three independent cohorts from South Korea, Japan, and the UK: a model development and validation study. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Type 2 diabetes mellitus (T2DM) is a significant global public health concern that has steadily increased over the past few decades. Thus, this study aimed to predict the incidence of T2DM within 5 years and the risk of mortality following the onset of T2DM. Data from three independent cohorts worldwide were used.

Methods: We utilized data from three independent, large-scale, general population-based, and worldwide cohort studies. The Korean cohort (NHIS-NSC cohort; discovery cohort; n = 973,303), conducted between 1 January, 2002 and 31 December, 2013, was used for training and internal validation, whereas the Japanese cohort (JMDC cohort; validation cohort A; n = 12,143,715) and UK cohort (UK Biobank; validation cohort B; n = 416,656) were used for external validation. We employed various machine learning (ML)-based models, using 18 features, to predict the incidence of T2DM within five years of regular health checkups and calculated the Shapley Additive Explanation (SHAP) values. To ensure the robustness of our ML-based prediction model, we investigated the potential association between the model probability divided into tertiles and the risk of mortality following the onset of T2DM.

Findings: In the discovery cohort, the ensemble model using voting with logistic regression and adaptive boosting achieved a balanced accuracy of 72.6% and an area under the receiver operating characteristics curve (AUROC) of 0.792. The SHAP value analysis of our proposed model revealed that age was the most important predictor of incident T2DM, followed by fasting blood glucose, hemoglobin, γ-glutamyl transferase level, and body mass index. The model probability is associated with an increased risk of mortality (T1: adjusted hazard ratio, 2.82 [95% CI, 2.01-3.94]; T2: 3.89 [2.74-5.53]; and T3: 7.73 [5.37-11.12]). Similar patterns and trends were observed in the validation cohorts (T1: 1.74 [1.49-2.03], T2: 1.97 [1.69-2.30], and T3: 3.31 [2.82-3.38] in validation cohort A; T1: 1.33 [1.03-1.71], T2: 1.54 [1.21-1.96], and T3: 1.73 [1.36-2.20] in validation cohort B).

Interpretation: This study derived and validated an ML-based model to predict the incidence of T2DM within 5 years across three countries (South Korea, Japan, and the UK), showing that the model probability is associated with an increased risk of mortality.

Funding: Institute of Information & Communications Technology Planning & Evaluation, South Korea.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11787438PMC
http://dx.doi.org/10.1016/j.eclinm.2025.103069DOI Listing

Publication Analysis

Top Keywords

validation cohort
16
three independent
12
south korea
12
predict incidence
12
incidence t2dm
12
t2dm years
12
risk mortality
12
cohort
12
model probability
12
prediction model
8

Similar Publications