Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Lithium metal batteries have garnered significant attention as promising energy storage solutions. However, their performance is often compromised by the risks associated with highly active metallic lithium, unrestricted electrode expansion, and excessive dendrites growth. Here we introduce an advanced lithiophilic anode substrate designed by chemically patterning technology for multiple security enhancements. The innovative lithiophilic array harmonizes spatial Li to prepare compact and reversible electrodes. The composite electrodes feature an enhanced C-F component in the solid-electrolyte interface, which protects the deposited lithium metal from unwanted side reactions, thereby stabilizing electrochemical cycling. Notably, the thermal safety can be revealed through the substrate's excellent catalytic ability to convert smoke and toxic gases during extreme thermal runaway. This work demonstrates a novel approach to integrating battery cycling stability with thermal safety, paving the way for more reliable and secure energy storage systems.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202500323DOI Listing

Publication Analysis

Top Keywords

lithium metal
12
chemically patterning
8
metal batteries
8
energy storage
8
thermal safety
8
patterning lithiophilic
4
lithiophilic interphase
4
interphase harmonize
4
harmonize spatial
4
spatial electrons
4

Similar Publications

Chemically Lithiated Poly(vinylidene difluoride) with In Situ Generated LiF Nanofiller as Hybrid Artificial Layer for Stable Lithium Metal Anodes.

Small

September 2025

Key Laboratory of Electrochemical Power Sources of Hubei Province, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.

Hybrid artificial layer based on inorganic/polymer composite endows superior toughness and mechanical strength, which can achieve high stability of lithium metal anode. However, the large particle size and uneven distribution of inorganic fillers hinder the uniform flow of lithium ions across the membrane, making it difficult to achieve smooth lithium metal deposition/stripping. In this work, a chemical lithiation-induced defluorination strategy is proposed to engineer  poly(vinylidene difluoride) (PVDF)-based artificial layers, enabling in situ incorporation of highly dispersed LiF nanofiller within the polymer matrix and precise control over the LiF content.

View Article and Find Full Text PDF

Confinement-Tailored High-Concentration Electrolytes in Metal-Organic Frameworks for Durable Lithium-Metal Batteries.

Small

September 2025

School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, P. R. China.

High-concentration electrolytes (HCEs) face inherent challenges such as high viscosity and diminished ionic conductivity caused by the formation of three-dimensional (3D) anion networks, which limit their practical applications. In this study, it is demonstrated that encapsulating HCEs within metal-organic frameworks (MOFs) effectively disrupts these 3-D networks, resulting in significantly enhanced ionic conductivity. Raman spectroscopy, nuclear magnetic resonance (NMR), and molecular dynamics (MD) simulations reveal a significant reduction in aggregates (AGGs)-state anion within MOF-confined electrolytes, confirming the reconstruction of the solvation environment.

View Article and Find Full Text PDF

All-solid-state batteries (ASSBs), equipped with highly ion-conductive sulfide solid electrolytes and utilizing lithium plating/stripping as anode electrochemistry, suffer from 1) chemical vulnerability of the electrolytes with lithium and 2) physical growth of lithium to penetrate the electrolytes. By employing an ordered mesoporous graphitic carbon (OMGC) framework between a sulfide electrolyte layer and a copper current collector in ASSB, the concerns by are addressed 1) minimizing the chemically vulnerable interface (CVI) between electric conductor and solid electrolyte, and 2) allowing lithium ingrowth toward the porous structure via Coble creep, a diffusional deformation mechanism of lithium metal along the lithium-carbon interface. The void volume of the framework is fully filled with lithium metal, despite ionic pathways not being provided separately, even without additional lithiophiles, when an enough amount of lithium is allowed to be plated.

View Article and Find Full Text PDF

The stress distribution in Li metal strongly affects the interfacial Li-ion diffusion, thereby influencing the morphology of plated Li and the performance of the battery. Here, we report a mechano-electrochemical coupling strategy that utilizes an arched structured carbon aerogel to achieve stable Li-plating/stripping electrochemistry. The arch-structured carbon aerogel can actively regulate stress distributions in response to the compressive stresses induced by Li deposition, generating the transition of stress from compressive on the convex surface to tensile on the concave surface, which can effectively promote the Li-migration kinetics and thus suppress the non-uniform deposition of Li.

View Article and Find Full Text PDF

Sodium-ion batteries (SIBs) are promising alternatives to lithium-ion batteries (LIBs) owing to abundant resources and cost-effectiveness. However, cathode materials face persistent challenges in structural stability, ion kinetics, and cycle life. This review highlights the transformative potential of high-entropy (HE) strategies that leveraging multi-principal element synergies to address these limitations entropy-driven mechanisms.

View Article and Find Full Text PDF