Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: This study assesses the national distribution of ambient fine particulate matter (PM2.5) exposure across socioeconomic status (SES) and its confounding on long-term PM2.5 mortality in Korea, aiming to minimize SES influence.

Methods: A nationwide cohort of 5% of Koreans, aged 30 or older, from 2007 to 2019, from the National Health Information Database, was analysed. PM2.5 exposure levels were estimated at the city level using the Community Multiscale Air Quality system. Mortality data were obtained from Statistics Korea. The study examined annual PM2.5 exposure by SES indicators and its confounding on mortality risks associated with PM2.5, using time-varying Cox proportional hazards models.

Results: The study followed 1 453 036 individuals from 2007 to 2019, totalling 17 760 227 person-years (PYs). The non-accidental (A00-R99), cardiovascular (I00-I99) and respiratory (J00-J99) mortality rates per 1000 PY were 7.6, 1.9 and 0.8, respectively. We observed a trend of decreasing PM2.5 exposure levels but increased mortality among medical aid beneficiaries, those with lower household incomes and those residing in neighbourhoods with a higher area deprivation index. When adjusting for these SES covariates, the long-term mortality effects of PM2.5 shifted in the direction of increased risk [hazard ratio (HR) for cardiovascular mortality in the unadjusted model = 0.968 (95% CI: 0.909-0.959); HR in the fully adjusted model = 1.053 (95% CI: 1.004-1.105)].

Conclusion: In regions where SES and PM2.5 concentrations are positively correlated, as in Korea, it is crucial to rigorously control for SES confounding to avoid underestimating the mortality effects associated with PM2.5.

Download full-text PDF

Source
http://dx.doi.org/10.1093/ije/dyaf001DOI Listing

Publication Analysis

Top Keywords

pm25 exposure
20
pm25
10
mortality
9
socioeconomic status
8
long-term pm25
8
mortality korea
8
ses confounding
8
2007 2019
8
exposure levels
8
associated pm25
8

Similar Publications

Objective: Joint exposure to fine particulate matter (PM₂․₅) and prolonged sedentary behavior in later life may erode physiological reserve and hasten carcinogenesis, yet evidence quantifying their combined impact on incident lung cancer among older Chinese adults is sparse. We investigated whether co-occurrence of high ambient PM₂․₅ and extensive sitting time accelerates incident lung cancer in a nationally representative cohort.

Methods: We analyzed 10,532 adults aged ≥45 years in the China Health and Retirement Longitudinal Study (2011-2018).

View Article and Find Full Text PDF

Association of air pollutants exposure and increased risk of peritoneal dialysis-related peritonitis: An observational study from PDTAP cohort.

Perit Dial Int

June 2025

Renal Division, Department of Medicine, Peking University First Hospital; Institute of Nephrology, Peking University; Key Laboratory of Renal Disease, Ministry of Health; Key Laboratory of Renal Disease, Ministry of Education, Beijing, China.

IntroductionAlthough the impact of air pollutants on infectious diseases is well-known, there is limited evidence regarding its effects on peritoneal dialysis (PD) patients. This study aimed to investigate the association between air pollutants and PD-related peritonitis.MethodsThis is an observational study affiliated to the PD Telemedicine-assisted Platform Cohort Study (PDTAP study), which is a national-level cohort study in China.

View Article and Find Full Text PDF

Long-term exposure to PM pollution increases the risk of cardiovascular diseases, particularly ischemic heart disease (IHD). Current assessments of the health effects related to PM exposure are limited by sparse ground monitoring stations and applicable disease research cohorts, making accurate health effect evaluations challenging. Using satellite-observed aerosol optical depth (AOD) data and the XGBoost-PM25 model, we obtained 1 km scale PM exposure levels across China.

View Article and Find Full Text PDF

BACKGROUND Exposure to air pollution (AP) during pregnancy is associated with pre-labor rupture of membranes (PROM). However, there is limited research on this topic, and the sensitive exposure windows remain unclear. The present study assessed the association between AP exposure and the risk of PROM, as well as seeking to identify the sensitive time windows.

View Article and Find Full Text PDF

Ambient PM and specific sources increase inflammatory cytokine responses to stimulators and reduce sensitivity to inhibitors.

Environ Res

July 2024

Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mt. Sinai, New York, NY, USA; Institute for Climate Change, Environmental Health, and Exposomics, Icahn School of Medicine at Mt. Sinai, New York, NY, USA.

Article Synopsis
  • Ambient exposure to fine particulate matter (PM) is linked to increased health risks, raising the question of how PM sensitizes the immune response in children.
  • A study involving 277 children investigated the effects of neighborhood PM on inflammatory responses, revealing that higher PM levels correlate with stronger cytokine reactions, particularly from vehicle emissions and dust.
  • Longitudinal findings indicated that residential PM exposure decreased sensitivity to anti-inflammatory agents, but PM levels did not appear to affect biomarkers of low-grade inflammation.
View Article and Find Full Text PDF