Article Synopsis

  • Contextuality is a key feature of quantum theory that contrasts with noncontextual hidden-variable models, with GHZ-type paradoxes providing clear proof of this difference.
  • The researchers present a new GHZ-type paradox that achieves the minimum context-cover number of 3, proving its relevance in quantum mechanics.
  • They demonstrate their findings through advanced optical techniques in a 37-dimensional setup, opening pathways for further investigation into unique quantum correlations using time-multiplexed systems.

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Contextuality is a hallmark feature of the quantum theory that captures its incompatibility with any noncontextual hidden-variable model. The Greenberger-Horne-Zeilinger (GHZ)-type paradoxes are proofs of contextuality that reveal this incompatibility with deterministic logical arguments. However, the GHZ-type paradox whose events can be included in the fewest contexts and that brings the strongest nonclassicality remains elusive. Here, we derive a GHZ-type paradox with a context-cover number of 3 and show that this number saturates the lower bound posed by quantum theory. We demonstrate the paradox with a time-domain fiber optical platform and recover the quantum prediction in a 37-dimensional setup based on high-speed modulation, convolution, and homodyne detection of time-multiplexed pulsed coherent light. By proposing and studying a strong form of contextuality in high-dimensional Hilbert space, our results pave the way for the exploration of exotic quantum correlations with time-multiplexed optical systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11789840PMC
http://dx.doi.org/10.1126/sciadv.abd8080DOI Listing

Publication Analysis

Top Keywords

quantum correlations
8
quantum theory
8
ghz-type paradox
8
quantum
5
exploring boundary
4
boundary quantum
4
correlations time-domain
4
time-domain optical
4
optical processor
4
processor contextuality
4

Similar Publications

Magnon-phonon hybridization in ordered materials is a crucial phenomenon with significant implications for spintronics, magnonics, and quantum materials research. We present direct experimental evidence and theoretical insights into magnon-phonon coupling in Mn_{3}Ge, a kagome antiferromagnet with noncollinear spin order. Using inelastic x-ray scattering and ab initio modeling, we uncover strong hybridization between planar spin fluctuations and transverse optical phonons, resulting in a large hybridization gap of ∼2  meV.

View Article and Find Full Text PDF

Ultrafast light-driven strongly correlated antiferromagnetic insulators, such as prototypical NiO with a large Mott energy gap ≃4  eV, have recently attracted experimental attention using photons of both subgap [H. Qiu et al., Nat.

View Article and Find Full Text PDF

Disorder and non-Hermitian effects together can upend how waves localize. In a 1D disordered chain, the non-Hermitian skin effect (NHSE) can induce Anderson delocalization, defying the usual rule that disorder in low dimensions always localizes states. While weak disorder leaves the NHSE intact, strong disorder restores Anderson localization.

View Article and Find Full Text PDF

Hyperbolic Spin Liquids.

Phys Rev Lett

August 2025

University of Alberta, Department of Physics, Edmonton, Alberta T6G 2E1, Canada.

Hyperbolic lattices present a unique opportunity to venture beyond the conventional paradigm of crystalline many-body physics and explore correlated phenomena in negatively curved space. As a theoretical benchmark for such investigations, we extend Kitaev's spin-1/2 honeycomb model to hyperbolic lattices and exploit their non-Euclidean space-group symmetries to solve the model exactly. We elucidate the ground-state phase diagram on the {8,3} lattice and find a gapped Z_{2} spin liquid with Abelian anyons, a gapped chiral spin liquid with non-Abelian anyons and chiral edge states, and a Majorana metal whose finite low-energy density of states is dominated by non-Abelian Bloch states.

View Article and Find Full Text PDF

We report direct spectroscopic evidence of correlation-driven Mott states in layered Nb_{3}Cl_{8} through combining scanning tunneling microscopy (STM) and dynamical mean-field theory. The Hubbard bands persist down to monolayer, providing the definitive evidence for the Mottness in Nb_{3}Cl_{8}. While the size of the Mott gap remains almost constant across all layers, a striking layer-parity-dependent oscillation emerges in the local density of states (LDOS) between even (n=2, 4, 6) and odd layers (n=1, 3, 5), which arises from the dimerization and correlation modulation of the obstructed atomic states, respectively.

View Article and Find Full Text PDF