98%
921
2 minutes
20
A macrocycle-based approach to the construction of a cationic polymeric network with pillar[5]arene as the node for efficient sequestration of hazardous IO and I is presented. Ultrafast kinetics ( 4 min) were achieved along with excellent adsorption capacities for both IO (456 mg g) and I (370 mg g), good selectivity, and outstanding reusability. This work showcases the merits of pillar[5]arene as nodes in cationic adsorption materials in the removal of anionic iodine species.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4cc05758a | DOI Listing |
Environ Sci Technol
September 2025
Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China.
Rapidly expanding nascent ecosystems at glacier forefields under climate warming dramatically enhance the terrestrial carbon (C) sink. Microbial C fixation and degradation, closely implicated in nitrogen (N) transformation and plant-soil-microbe interactions, significantly regulate soil C accumulation. However, how shifts in microbial functional potential impact soil C sequestration during vegetation succession remains unclear.
View Article and Find Full Text PDFJ Environ Manage
September 2025
National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and the Environment, Shandong Agricultural University, Tai'an, 271018, China.
Excessive use of conventional potassium chloride (KCl) fertilizer has led to soil degradation problems such as compaction and salinization. While controlled-release potassium chloride (CRK) fertilizer has the potential to enhance crop productivity and mitigate these problems, its impact on soil quality (SQ) remains unclear. In this study, four potassium (K) fertilization treatments were established: no K application (CK), conventional KCl fertilizer (CRK0), 50 % substitution with CRK (CRK0.
View Article and Find Full Text PDFJ Environ Manage
September 2025
State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, 100193, Beijing, China. Electronic address:
The growing demand for food has led to overuse of land, exacerbating the environmental sustainability of agrifood systems. Insufficient coordination and coupling within agrifood systems (soil-crop-animal-food consumption) reduce material cycle efficiency and limit the system's carbon reduction potential. Given the lack of global research on the impact of system coupling on carbon reduction, the value of regional practice cases is particularly evident.
View Article and Find Full Text PDFCarbohydr Polym
November 2025
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China; College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China. Electronic address:
Sulforaphene (SFE) is a bioactive isothiocyanate, known for its cancer-preventive, anti-inflammatory, and antioxidant properties. However, the application of SFE is severely limited by its poor stability. Hydroxypropyl methylcellulose (HPMC), an amphiphilic carbohydrate polymer, has potentials to enhance the stability of SFE and the loading capacity.
View Article and Find Full Text PDFPLoS One
September 2025
Daqing Yongzhu Petroleum Technology Development Co Ltd., Daqing, China.
Background: Strongly water-sensitive reservoirs with high clay content face challenges in conventional development due to clay swelling and impeded seepage. CO2 injection shows potential for enhanced oil recovery (EOR) and carbon sequestration; however, the role of clay minerals in regulating CO2-induced asphaltene deposition and sequestration remains unclear.
Methodology: We conducted experiments on clay-oil interactions, nuclear magnetic resonance (NMR), measurements of crude oil properties, and long core water flooding tests to evaluate deposition, reservoir damage, and CO2 sequestration.