98%
921
2 minutes
20
Centrifugation is crucial for size and density-based sample separation, but low-volume or delicate samples suffer from loss and impurity issues during repeated spins. We introduce the "Spinochip", a novel microfluidic system utilizing centrifugal forces for efficient filling of dead-end microfluidic channels. The Spinochip enables versatile fluid manipulation with a single reservoir for both inlet and outlet functions. It expels compressed air, facilitating fluid flow, and offers programmable filling mechanisms based on the hydraulic resistance of microfluidic channels. Compatible with a basic centrifuge, it allows sequential filling, internal mixing, and collection in straight microfluidic channels by simply adjusting the spinning speed, eliminating the need for complex valving. We demonstrated the Spinochip's efficacy in blood testing, where it successfully separated blood components, such as plasma, buffy coat, and red blood cells, from a single drop using centrifugation alone. This system enabled simultaneous hematocrit ( >0.99) and total white blood cell ( >0.93) quantification within a single microfluidic channel without the need for staining or special reagents. Remarkably, the Spinochip can perform hematocrit measurements on as little as 100 nL of blood, potentially paving the way for less invasive blood analysis. This innovative approach unlocks new possibilities in microfluidics, providing precise fluidic control and centrifugation for sample volumes as small as a few nanoliters.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4lc00979g | DOI Listing |
J Control Release
September 2025
Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada; The Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario M5B 1T8, Canada; Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M
Microfluidic hydrodynamic focusing (HF) has emerged as a powerful platform for the controlled synthesis of lipid nanoparticles (LNPs) and liposomes, offering superior precision, reproducibility, and scalability compared to traditional batch methods. However, the impact of HF inlet configuration and channel geometry on nanoparticle formation remains poorly understood. In this study, we present a comprehensive experimental and computational analysis comparing 2-inlet (2-way) and 4-inlet (4-way) HF designs across various sheath inlet angles (45°, 90°, 135°) and cross-sectional geometries (square vs.
View Article and Find Full Text PDFPRX Life
February 2025
Department of Physics & Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA.
When cells in a primary tumor work together to invade into nearby tissue, this can lead to cell dissociations-cancer cells breaking off from the invading front-leading to metastasis. What controls the dissociation of cells and whether they break off singly or in small groups? Can this be determined by cell-cell adhesion or chemotactic cues given to cells? We develop a physical model for this question, based on experiments that mimic aspects of cancer cell invasion using microfluidic devices with microchannels of different widths. Experimentally, most dissociation events ("ruptures") involve single cells breaking off, but we observe some ruptures of large groups (~20 cells) in wider channels.
View Article and Find Full Text PDFLab Chip
September 2025
Department of Engineering Design, Indian Institute of Technology Madras, India.
Microfluidic devices offer more accurate fluid flow control and lower reagent use for uniform nanoparticle synthesis than batch synthesis. Here, we propose a microfluidic device that synthesizes uniform iron oxide nanoparticles (IONPs) for highly efficient intracellular delivery. The 3D-printed device was fabricated, comprising two inlets in the T-shaped channel with an inner diameter of 2 mm, followed by a helical mixing channel with a single outlet.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China. Electronic address:
Aptamers are single-stranded DNA or RNA oligonucleotides that can bind to specific target molecules with high affinity and specificity. Fluorescence DNA aptamer-based biosensors (aptasensors) have emerged as powerful analytical tools for detecting diverse targets, ranging from food contaminants to disease biomarkers, owing to their exceptional specificity, high sensitivity, and cost-effectiveness. This review systematically summarizes recent advances in the design strategies of fluorescence aptasensors, focusing on three key approaches: (1) fluorescence resonance energy transfer-based signal amplification, (2) nanomaterial-enhanced probes, and (3) multi-channel platforms for simultaneous detection.
View Article and Find Full Text PDFAdv Healthc Mater
September 2025
Research Institute, T&R Biofab. Co. Ltd., 242 Pangyo-ro, Seongnam-si, Gyeonggi-do, 13487, Republic of Korea.
Tissue engineering holds a significant promise for the development of bioartificial organs applicable to transplantation. However, the size of engineered tissues remains limited, primarily due to the challenge of establishing microvascular networks within tissue constructs. In this study, engineered tissues are fabricated and embedded with functional microvascular networks by assembling endothelial cell-covered spheroidal microtissues.
View Article and Find Full Text PDF