Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Polymeric materials made from renewable sources that can biodegrade in the environment are attracting considerable attention as substitutes for petroleum-based polymers in many fields, including additive manufacturing and, in particular, Fused Deposition Modelling (FDM). Among the others, poly(hydroxyalkanoates) (PHAs) hold significant potential as candidates for FDM since they meet the sustainability and biodegradability standards mentioned above. However, the most utilised PHA, consisting of the poly(hydroxybutyrate) (PHB) homopolymer, has a high degree of crystallinity and low thermal stability near the melting point. As a result, its application in FDM has not yet attained mainstream adoption. Introducing a monomer with higher excluded volume, such as hydroxyvalerate, in the PHB primary structure, as in poly(hydroxybutyrate-co-valerate) (PHBV) copolymers, reduces the degree of crystallinity and the melting temperature, hence improving the PHA printability. Blending amorphous poly(lactic acid) (PLA) with PHBV enhances further PHA printability via FDM. In this work, we investigated the printability of two blends characterised by different PLA and PHBV weight ratios (25:75 and 50:50), revealing the close connection between blend microstructures, melt rheology and 3D printability. For instance, the relaxation time associated with die swelling upon extrusion determines the diameter of the extruded filament, while the viscoelastic properties the range of extrusion speed available. Through thoroughly screening printing parameters such as deposition speed, nozzle diameter, flow percentage and deposition platform temperature, we determined the optimal printing conditions for the two PLA/PHBV blends. It turned out that the blend with a 50:50 weight ratio could be printed faster and with higher accuracy. Such a conclusion was validated by replicating with remarkable fidelity high-complexity objects, such as a patient's cancer-affected iliac crest model.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11766440PMC
http://dx.doi.org/10.3390/jfb16010009DOI Listing

Publication Analysis

Top Keywords

rheology printability
8
degree crystallinity
8
pha printability
8
pla phbv
8
printability
5
study interplay
4
interplay melt
4
melt morphology
4
morphology rheology
4
printability polylactic
4

Similar Publications

In-use and long-term physicochemical, rheological and biopharmaceutical stability of 3D-printed inks and/or their respective pimobendan printlets for veterinary use: A pilot study.

Int J Pharm

September 2025

Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia Universidade Federal do Rio Grande do Sul, Avenida Ipiranga, 2752, Porto Alegre, Rio Grande do Sul 90610-000, Brazil; Laboratório de Nanocarreadores e Impressão 3D em Tecnologia Farmacêutica (Nano3D), Faculdade de Fa

The implementation of 3D printing technologies in clinical settings depends on formulations that are not only printable and compliant with quality standards but also physicochemical stable and reliable under real-use conditions. This study evaluated the in-use and long-term physicochemical and rheological stability of two hydrogel inks developed for semisolid extrusion (SSE) 3D printing: one containing pimobendan (PBD) and the other a placebo. PBD is a poorly water-soluble drug used to treat canine heart failure, whose formulation challenges highlight the potential of personalised drug delivery.

View Article and Find Full Text PDF

Rheological, Structural, and Biological Trade-Offs in Bioink Design for 3D Bioprinting.

Gels

August 2025

Bioengineering & Regenerative Medicine Research Group (Bio-ReM), Escuela de Ingeniería, Arquitectura y Diseño (EIAD), Universidad Alfonso X el Sabio (UAX), Avenida de la Universidad 1, Villanueva de la Cañada, 28691 Madrid, Spain.

Bioinks represent the core of 3D bioprinting, as they are the carrier responsible for enabling the fabrication of anatomically precise, cell-laden constructs that replicate native tissue architecture. Indeed, their role goes beyond structural support, as they must also sustain cellular viability, proliferation, and differentiation functions, which are critical for applications in the field of regenerative medicine and personalized therapies. However, at present, a persistent challenge lies in reconciling the conflicting demands of rheological properties, which are essential for printability and biological functionality.

View Article and Find Full Text PDF

Machine learning is reshaping gel-based additive manufacturing by enabling accelerated material design and predictive process optimization. This review provides a comprehensive overview of recent progress in applying machine learning across gel formulation development, printability prediction, and real-time process control. The integration of algorithms such as neural networks, random forests, and support vector machines allows accurate modeling of gel properties, including rheology, elasticity, swelling, and viscoelasticity, from compositional and processing data.

View Article and Find Full Text PDF

The utilization of 3D printing technology in the food sector enables innovative product customization through the design of intricate shape, offering new potential for yellow peach product development. However, the 3D printing performance of pure yellow-flesh peach gel is suboptimal. This study aims to address this gap by exploring functional additives to optimize 3D printing performance for peach-based materials.

View Article and Find Full Text PDF

Hybrid bioink of methyacrylated starch with minimal methacrylated chitosan enables high-precision 3D printing for complex tissue scaffolds.

Carbohydr Polym

November 2025

Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, 211 Xingguang Road, Ningbo 315048, China. Electronic address:

Starch-based gels represent promising bioinks for 3D-printed cell scaffolds due to their biosafety, biocompatibility, and biodegradability. However, their widespread adoption has been hindered by inadequate formability and poor self-supporting properties. Here, we introduce an innovative starch-dominated hydrogel system achieved through dual methacrylation of normal corn starch and chitosan, enabling the fabrication of biodegradable cell scaffolds.

View Article and Find Full Text PDF