98%
921
2 minutes
20
The valorization of sewage sludge and food waste to produce energy and fertilizers is a well-stablished strategy within the circular economy. Despite the success of numerous laboratory-scale experiments in converting waste into high-value products such as volatile fatty acids (VFAs), large-scale implementation remains limited due to various technical and environmental challenges. Here, we evaluate the environmental performance of a hypothetical large-scale VFAs biorefinery located in Galicia, Spain, which integrates fermentation and purification processes to obtain commercial-grade VFAs based on primary data from pilot plant operations. We identify potential environmental hotspots, assess the influence of different feedstocks, and perform sensitivity analyses on critical factors like transportation distances and pH control methods, using life cycle assessment. Our findings reveal that, on a per-product basis, food waste provides superior environmental performance compared to sewage sludge, which, conversely, performs better when assessed per mass of waste valorized. This suggests that higher process productivity from more suitable wastes leads to lower environmental impacts but must be balanced against increased energy and chemical consumption, as food waste processing requires more electricity for pretreatment and solid-liquid separation. Further analysis reveals that the main operational impacts are chemical-related, primarily due to the use of NaOH for pH adjustment. Additionally, facility location is critical, potentially accounting for up to 99% of operational impacts due to transportation. Overall, our analysis demonstrates that the proposed VFAs biorefinery has a carbon footprint comparable to other bio-based technologies. However, enhancements in VFAs purification processes are necessary to fully replace petrochemical production. These findings highlight the potential of waste valorization into VFAs as a sustainable alternative, emphasizing the importance of process optimization and strategic facility placement.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11741900 | PMC |
http://dx.doi.org/10.1016/j.ese.2024.100518 | DOI Listing |
Carbohydr Polym
November 2025
Department of Inorganic, Organic and Biochemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Ciudad Real, 13005, Spain. Electronic address:
This study investigates the extraction, optimization, and characterization of pectin from pistachio industry waste (PIW) using microwave-assisted subcritical water extraction (MASWE) without acid. Two different low-methoxyl pectins (LMP) were observed. The first pectin variant (MASWE100) was extracted at a pressure of 3 MPa, a temperature of 100 °C, and an irradiation time of 4 min.
View Article and Find Full Text PDFCarbohydr Polym
November 2025
Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, NE1 8ST Newcastle Upon Tyne, United Kingdom; Centre for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, 46022, Valencia, Spain. Electronic address: joel.l.g.hernandez@north
Polysaccharides, widely used in food, pharmaceutical and industrial sectors, are abundant in Theobroma species pod husk waste (T. cacao, T. grandiflorum and T.
View Article and Find Full Text PDFBioresour Technol
September 2025
College of Water Science, Beijing Normal University, Beijing 100875, China.
The bioconversion of purple non-sulfur photosynthetic bacteria (PNSB) based on real food waste (FW) fermentation broth is crucial for FW resource recovery. This study enhanced the bioconversion efficiency of FW fermentation broth by PNSB through light intensity and photoperiod optimization, while elucidating the synthesis mechanisms of high-value cell inclusions. The results demonstrated that 4500 lx-L/D = 16/8 significantly enhanced R.
View Article and Find Full Text PDFFood Chem Toxicol
September 2025
Science Strategies, LLC, PMB 1111, 2795 E. Cottonwood Parkway, Suite 300, Salt Lake City, UT 84121.
Tetrabromobisphenol A (TBBPA) is the most extensively used brominated flame retardant worldwide, primarily employed reactively in printed circuit boards and additively in plastic housings of electronic equipment. This study systematically evaluates human exposure to TBBPA from electronic devices and characterizes associated risks. A targeted literature review of 55 peer-reviewed studies published over the past 25 years was conducted, focusing on global TBBPA occurrence in environmental media, occupational and residential settings, and biological matrices.
View Article and Find Full Text PDFAdv Colloid Interface Sci
August 2025
NanoBioTech Laboratory, Department of Chemistry, Florida Polytechnic University, Lakeland, FL-33805, USA. Electronic address:
Considering the complexities of electronics waste management to meet the requirements of digital-age technologies, this article underscores the pressing need for eco-friendly, economical, and sustainable engineering solutions. Here, it uniquely focuses on bacteriogenic metallic and semiconducting nano-systems as a promising yet underexplored solution for sustainable materials innovation. Unlike conventional green nanofabrication methods involving plants or eukaryotic microbes, bacteria possess numerous merits for fabrication, including ease of cultivation, a wide spectrum of genera, abundance, prompt cell division efficacy, genetic elasticity, and high bio-reduction/oxidation efficacy that make them highly adaptable platforms for engineered nanostructures.
View Article and Find Full Text PDF