98%
921
2 minutes
20
Anaerobic digestion (AD) viruses have gained recognition as significant regulators of microbial interactions within AD communities, yet their ecological roles remain largely unexplored. In this study, we investigated the ecological roles of AD viruses in regulating microbial interactions among syntrophic hosts. We recovered 3921 diverse viral sequences from four full-scale anaerobic digesters and confirmed their widespread presence across 127 global metagenomic sampling sites (with >95 % sequence similarity), underscoring the ubiquity of prokaryotic viruses in AD-related systems. Through the construction of virus-prokaryote interactions (66.8 % validated at the transcriptional level) and analysis of viral-host transcriptional abundances, we identified significant associations between AD viruses and key processes, including hydrolysis, acidogenesis, and methanogenesis. Notably, polyvalent viruses were found to interact with both hydrolytic and fermentative communities. We further characterized viral auxiliary metabolism, hydrolytic substrate spectra, and microbial auxotrophy, showing that viruses not only could enhance the breakdown of complex substrates (e.g., cellulose, chitin, peptidoglycan) but also potentially supported the biosynthesis of essential nutrients (e.g., cysteine, methionine, heme, and cobalamin). These activities were proposed to regulate resource fluxes through alternating lysogenic and lytic cycles. Phylogenetic analysis of viral gene and horizontal gene transfer (HGT) identification suggest that AD viruses employ promiscuous infection on syntrophic hosts, potentially as an adaptive evolutionary strategy in the AD ecosystem. This study provides new insights into the ecological roles of AD viruses, highlighting their potential impact on the stability and functionality of AD systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2025.123140 | DOI Listing |
FEMS Microbiol Ecol
September 2025
School of Biological Sciences, University of Auckland, 3A Symonds Street, Auckland, New Zealand, 1142.
The relationship between, and joint selection on, a host and its microbes-the holobiont-can impact evolutionary and ecological outcomes of the host and its microbial community. We develop an agent-based modelling framework for understanding the ecological dynamics of hosts and their microbiomes. Our model incorporates numerous microbial generations per host generation allowing selection on both host and microbes.
View Article and Find Full Text PDFArch Microbiol
September 2025
School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
Endophytic fungi are nonpathogenic fungi that live symbiotically in the interior of healthy plant tissues and form mutualistic associations with their hosts. These fungi are critically involved in promoting plant development, strengthening plant uptake of nutrients, and improving plant resistance to biotic and abiotic stress conditions. Endophytic fungi improve plant growth by synthesizing phytohormones (e.
View Article and Find Full Text PDFAppl Environ Microbiol
September 2025
Department of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland.
Unlabelled: The genus includes opportunistic pathogens inhabiting engineered aquatic ecosystems, where managing their presence and abundance is crucial for public health. In these environments, interact positively or negatively with multiple members of the microbial communities. Here, we identified bacteria and compounds with -antagonistic properties.
View Article and Find Full Text PDFPlant Physiol
September 2025
Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Utrecht 3508 TB, the Netherlands.
The increasing demand for sustainable agricultural practices has driven a renewed interest in plant-microbiome interactions as a basis for the next "green revolution." Central to these interactions are root-derived metabolites that act as mediators of microbial recruitment and function. Plants exude a chemically diverse array of compounds that influence the assembly, composition, and stability of the root microbiome.
View Article and Find Full Text PDFMar Life Sci Technol
August 2025
State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005 China.
Unlabelled: Marine heterotrophic prokaryotes initially release extracellular enzymes to cleave large organic molecules and then take up ambient substrates via transporters. Given the direct influence of extracellular enzymes on nutrient availability, understanding their diversity and dynamics is crucial in comprehending microbial interactions and organic matter cycling in aquatic ecosystems. In this study, metagenomics was employed to investigate the functional diversity and dynamics of extracellular enzymes and transporters in coastal waters over a 22-day period.
View Article and Find Full Text PDF