98%
921
2 minutes
20
Dental resin-based restorative (RBR) materials represent the most ubiquitous biomaterials utilized globally. Methacrylate (MA)-ester based monomers - present in RBRs since the 1960s - experience significantly elevated rates of failure compared to previously used silver/amalgam fillings attributed to their hydrolysis reported in both simulated and in vivo environments. There is currently no alternative RBR chemistry that matches the functional and clinical workflow considerations of MA-RBRs while addressing their limited-service lives. The objective of this work is to utilize a systematic framework to develop alternative hydrolytically-stable monomers (HSMs), assessing key physical properties, biostability, and cytocompatibility towards eliminating or reducing the biodegradation of RBRs. This process yielded HSMs (referreed to as 3BE, 3TE) that matched the physical properties of MA-control materials, including viscosity, polymerization conversion, hydrophilicity, water uptake, and surface hardness (p > 0.05), while outperforming MA-based materials in all simulated oral environments, showing improved biostability in reconstituted human saliva, simulated human salivary esterase (SHSE), bacterial culture, and acidic media (p < 0.05). Additionally, HSMs were found to be less cytotoxic than commercial MA-monomers (p < 0.05) and unlikely to be genotoxic. Therefore, the HSMs and associated resins developed in this study have the potential to significantly improve the clinical service life of RBRs, without compromising their fundamental features.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adhm.202403427 | DOI Listing |
Top Curr Chem (Cham)
September 2025
Center for Advanced Materials Research, Research Institute of Sciences and Engineering, University of Sharjah, 27272, Sharjah, United Arab Emirates.
Controlling the size of gold nanoparticles (AuNPs) has been critical in diagnostics, biomolecular sensing, targeted therapy, wastewater treatment, catalysis, and sensing applications. Ultrasmall AuNPs (uAuNPs), with sizes Ranging from 2 to 5 nm, and gold nanoclusters (AuNCs), with sizes less than 2 nm, are often dealt with interchangeably in the literature, making it challenging to review them separately. Although they are grouped in our discussion, their chemical and physical properties differ significantly, partly due to their electronic properties.
View Article and Find Full Text PDFEnviron Monit Assess
September 2025
Department of Geography, Rampurhat College, University of North Bengal, Darjeeling, 734013, India.
Catastrophic climate events such as floods significantly impact infrastructure, agriculture, and the economy. The lower Gandak River basin in India is particularly flood-prone, with Bihar experiencing annual losses of life and property due to massive flooding. Identifying flood-prone zones in this region is essential.
View Article and Find Full Text PDFEnviron Monit Assess
September 2025
Institute of Environmental Studies, Kurukshetra University, Kurukshetra, Haryana, 136119, India.
India produces an estimated 6.38 million tons of surplus sugarcane trash annually. When burned in fields, this trash emits approximately 12,948 kg CO equivalent greenhouse gases per hectare and causes nutrient losses (41 kg ha nitrogen, 5.
View Article and Find Full Text PDFPhotosynth Res
September 2025
College of Life Sciences, Shanghai Normal University, Shanghai, 200235, China.
Euglena sanguinea (Ehrenberg 1831) is one of the earliest reported species within the genus Euglena. Its prolific proliferation leading to red algal bloom has garnered significant scientific attention due to its ecological and environmental impacts. Despite this, research on E.
View Article and Find Full Text PDFArch Microbiol
September 2025
College of Bioengineering, Sichuan University of Science and Engineering, Zigong, 643000, China.
The esterase gene encoding EstJN1 of Clostridium butyricum, which was isolated from the pit cellar of Chinese liquor facility, was expressed. EstJN1 was identified as a novel GDSL esterase belonging to family II. The enzyme demonstrated a marked substrate preference for p-nitrophenyl butyrate, with optimal activity at a temperature of 40 ℃ and a pH of 7.
View Article and Find Full Text PDF