Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Anthropogenic inputs of nitrogen and phosphorus to lakes have increased worldwide, causing phytoplankton chlorophyll concentrations to increase at many sites, with negative implications for biodiversity and human usage of lake resources. However, the conversion of nutrients to chlorophyll varies among lakes, hindering effective management actions to improve water quality. Here, using a rich global dataset, we explore how the relationship between chlorophyll-a (Chla) and nitrogen and phosphorus and inferred nutrient limitation is modified by climate, catchment, hydrology and lake characteristics. Phosphorus was the dominant control in oligotrophic/mesotrophic lakes, both nitrogen and phosphorus co-limitations were dominant in (hyper)eutrophic lakes, apart from hypereutrophic shallow lakes, where nitrogen was the main limiting factor. A generalized additive model of Chla vs nutrients identified a sigmoidal-type relationship with clear breakpoints between Chla and nutrients in all depth-dependent lake categories, except for nitrogen in shallow lakes. The model revealed that Secchi depth, as the predominant factor explaining the residuals, followed by the lake thermal region, elevation, and maximum depth. Lake shoreline slope, hydraulic retention time, mean depth, shoreline length, and watershed area were also statistically significant drivers for deep lakes. Surface area was only significant in shallow lakes, as it directly affects surface heating and surface contact with the wind, resulting in non-significant impact of thermal region in shallow lakes. These findings provide new insights into the response of global lake eutrophication and its main drivers, which could assist lake managers and policy-makers in mitigating widespread lake eutrophication.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2025.123094DOI Listing

Publication Analysis

Top Keywords

shallow lakes
16
nitrogen phosphorus
12
lakes
10
conversion nutrients
8
nutrients chlorophyll
8
lake
8
lakes nitrogen
8
chla nutrients
8
thermal region
8
lake eutrophication
8

Similar Publications

Seasonal quantification of aquatic macrophytes in small boreal lakes with multiscale remote sensing.

Sci Total Environ

September 2025

Environmental Change Research Unit, Faculty of Biological and Environmental Sciences, University of Helsinki, P.O. Box 65, FI-00014, Finland.

Small lakes are common across the Boreal-Arctic zone. Due to shallowness and high shoreline-surface area ratios, they are abundant in aquatic macrophytes. Vegetated littoral zones have been suggested to count as wetlands when quantifying carbon sinks and sources, but the actual magnitude of aquatic vegetation is seldom quantified.

View Article and Find Full Text PDF

Shallow lakes are increasingly subjected to pronounced alterations in hydrological regimes and exacerbated nutrient stoichiometric imbalances due to climate change and anthropogenic factors. Understanding the interactions between watershed eco-hydrological processes and lake systems, particularly their impact on nutrient balance dynamics deserves further investigation. Employing seasonal-trend decomposition (STL), Copula modeling, and the Lindeman-Merenda-Gold (LMG) algorithm, this study systematically analyzed eco-hydrological processes in Poyang Lake basin and identified hydrological regime as the key factor governing lake nutrient balance.

View Article and Find Full Text PDF

Long-term and seasonal dynamic patterns and drivers of dissolved carbon in a shallow eutrophic lake.

Environ Monit Assess

September 2025

State Key Laboratory of Lake and Watershed Science for Water Security, Institute of Geography and Limnology, Chinese Academy of Sciences, Beijing East Road 73, Nanjing, 210008, China.

Dissolved carbon is a crucial component of freshwater ecosystems and plays an important role in the Earth's carbon cycle. This paper delivers a groundbreaking exploration of dissolved carbon (DOC and DIC) variations spanning 12 years in a eutrophic lake where nutrient levels are gradually declining to reveal their spatial and temporal distribution patterns and the key drivers behind this variation. Our findings indicate that both DIC and DOC concentrations in Lake Chaohu exhibit a westward spatial gradient, with an overall upward trend in DIC levels from 2012 to 2023, contrasting with a downward trend in DOC.

View Article and Find Full Text PDF

Macrophytes in lowland rivers have traditionally been studied with a focus on surface water chemistry, particularly nutrients. However, unlike in lakes, the relationship between macrophytes and surface water nutrients in rivers is generally weaker, especially in highly alkaline lowland rivers, which are often found more downstreams. In these systems, elevated sediment nutrient levels may better explain macrophyte community compositions than surface water nutrients alone.

View Article and Find Full Text PDF

Long-term patterns and drivers of carbon burial variations in alpine lakes of Northwest Yunnan, China under regional warming.

Ying Yong Sheng Tai Xue Bao

August 2025

Yunnan Key Laboratory of Plateau Geographical Processes and Environmental Change, Faculty of Geography, Yunnan Normal University, Kunming 650500, China.

Lakes are crucial terrestrial carbon sinks for the Earth's surface systems, where the burial and transformation of total organic carbon (OC) and inorganic carbon (IC) are strongly influenced by watershed surface processes. In alpine regions with limited direct human impact, long-term warming trends can enhance key proce-sses, such as algal growth and the mineralization of organic matter, thereby altering OC and IC accumulation and burial dynamics. We examined spatial patterns, synergistic relationships and controlling factors of carbon burial under regional warming across six alpine lakes in northwestern Yunnan (deep lakes: Dinggongniang Co, Gaigong Co Na, Wodi Co; shallow lakes: Dinggong Co, Bigu Tianchi, Shudu Lake), by employing multiple proxies including total nitrogen, chlorophyll, OC and IC contents, combined with climate reconstruction data.

View Article and Find Full Text PDF