Probiotics fermentation enhanced the bioactive properties of water extract and improved regulation ability of gut microbiota.

Food Chem X

Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, School of Basic Medical Science, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, PR China.

Published: January 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study investigated the probiotic potential of fermented beverages derived from (). Three different beverages were prepared by fermenting water extract with A6-3 ( A6-3), A27-1 ( A27-1), or both for 48 h. The results demonstrated that bioactive compounds from promoted the growth of these two probiotics and preserved their viability for at least 28 days at 4 °C. Following fermentation, the concentrations of chlorogenic acid, coniferin, lactic acid, glycolic acid, and behenic acid were significantly elevated. Additionally, the fermented beverages promoted the growth of intestinal probiotics such as , , while inhibiting pathogens like , . Moreover, the fermented beverages exhibited beneficial effects, including antibacterial, antioxidant, anti-inflammatory activities. In conclusion, preserved the viability of probiotics, and probiotic, in turn, enhanced the beneficial functions of the fermented beverages.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11732517PMC
http://dx.doi.org/10.1016/j.fochx.2024.102106DOI Listing

Publication Analysis

Top Keywords

fermented beverages
16
water extract
8
promoted growth
8
preserved viability
8
beverages
5
probiotics
4
probiotics fermentation
4
fermentation enhanced
4
enhanced bioactive
4
bioactive properties
4

Similar Publications

What Makes Lupins Less Palatable to Consumers? Can the Sensory Quality of Lupin be Improved and Commercialized?

Compr Rev Food Sci Food Saf

September 2025

School of Molecular and Life Sciences, Faculty of Science and Engineering, Curtin University, Bentley, Western Australia, Australia.

Introducing underutilized legumes as plant-based protein sources to daily meals is an approach to address the increasing demand for alternative proteins. However, legumes often exhibit off-flavors and aromas, causing negative consumer perceptions. Lupins are an underutilized legume that is becoming popular as a plant protein source due to their high protein, fiber, and low starch contents.

View Article and Find Full Text PDF

Non-Saccharomyces yeasts enhance yield and flavor in industrial xiaoqu light-flavor baijiu production.

Food Res Int

November 2025

State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China. Electronic address:

This study investigated the effects of adding Saccharomycopsis fibuligera (SF) and Pichia kudriavzevii (PK) on microbial communities and flavor substances in industrial xiaoqu light-flavor baijiu production. The result showed that the highest acidity was found in the control group (CK: Saccharomyces cerevisiae and Rhizopus) at the end of fermentation. SF and PK promoted the growth of Rhizopus while decreasing the abundance of S.

View Article and Find Full Text PDF

A novel molecularly imprinted polymer (MIP)-based electrochemical sensor has been developed for the selective detection of naringenin (NAR) in various real-world samples, including plant extracts, wine, and herbal supplements. To enhance the active surface area and porosity of the glassy carbon electrode (GCE), a 2D/0D nanocomposite composed of graphene oxide (GO) and cobalt ferrite (CFO) nanoparticles, CFO_GO, was incorporated into the sensor design. 4-aminobenzoic acid (4-ABA) was selected as the functional monomer to prepare the MIPs.

View Article and Find Full Text PDF

Background: Fermented foods vary significantly by food substrate and regional consumption patterns. Although they are consumed worldwide, their intake and potential health benefits remain understudied. Europe, in particular, lacks specific consumption recommendations for most fermented foods.

View Article and Find Full Text PDF

Exploring Carbon-Sulfur (CS) Lyase Enzymes across Microbial Diversity for Enhanced Thiol Release in Beer and Wine.

J Agric Food Chem

September 2025

PhyMedExp - Inserm U1046 - CNRS UMR 9214, CHU Arnaud de Villeneuve Bâtiment Crastes de Paulet, 371 avenue du Doyen Gaston Giraud, Montpellier Cedex 05 34295, France.

Different precursors of volatile sulfur compounds (VSCs) are present in fermented beverages, such as wine and beer. Carbon-sulfur (CS) lyases are enzymes that play a crucial role in releasing aromas from these varietal thiol precursors. These enzymes are expressed by various organisms, including yeasts and bacteria, involved in fermentation processes during brewing and winemaking.

View Article and Find Full Text PDF