98%
921
2 minutes
20
Background: The advancement of nanotechnology underscores the imperative need for establishing in silico predictive models to assess safety, particularly in the context of chronic respiratory afflictions such as lung fibrosis, a pathogenic transformation that is irreversible. While the compilation of predictive descriptors is pivotal for in silico model development, key features specifically tailored for predicting lung fibrosis remain elusive. This study aimed to uncover the essential predictive descriptors governing nanoparticle-induced pulmonary fibrosis.
Methods: We conducted a comprehensive analysis of the trajectory of metal oxide nanoparticles (MeONPs) within pulmonary systems. Two biological media (simulated lung fluid and phagolysosomal simulated fluid) and two cell lines (macrophages and epithelial cells) were meticulously chosen to scrutinize MeONP behaviors. Their interactions with MeONPs, also referred to as nano-bio interactions, can lead to alterations in the properties of the MeONPs as well as specific cellular responses. Physicochemical properties of MeONPs were assessed in biological media. The impact of MeONPs on cell membranes, lysosomes, mitochondria, and cytoplasmic components was evaluated using fluorescent probes, colorimetric enzyme substrates, and ELISA. The fibrogenic potential of MeONPs in mouse lungs was assessed by examining collagen deposition and growth factor release. Random forest classification was employed for analyzing in chemico, in vitro and in vivo data to identify predictive descriptors.
Results: The nano-bio interactions induced diverse changes in the 4 characteristics of MeONPs and had variable effects on the 14 cellular functions, which were quantitatively evaluated in chemico and in vitro. Among these 18 quantitative features, seven features were found to play key roles in predicting the pro-fibrogenic potential of MeONPs. Notably, IL-1β was identified as the most important feature, contributing 27.8% to the model's prediction. Mitochondrial activity (specifically NADH levels) in macrophages followed closely with a contribution of 17.6%. The remaining five key features include TGF-β1 release and NADH levels in epithelial cells, dissolution in lysosomal simulated fluids, zeta potential, and the hydrodynamic size of MeONPs.
Conclusions: The pro-fibrogenic potential of MeONPs can be predicted by combination of key features at nano-bio interfaces, simulating their behavior and interactions within the lung environment. Among the 18 quantitative features, a combination of seven in chemico and in vitro descriptors could be leveraged to predict lung fibrosis in animals. Our findings offer crucial insights for developing in silico predictive models for nano-induced pulmonary fibrosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11731361 | PMC |
http://dx.doi.org/10.1186/s12989-024-00616-3 | DOI Listing |
Nano Lett
September 2025
State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
An optimal administration approach is critical for effective mRNA delivery and treatment. Nebulizer inhalation offers a mild, convenient, and noninvasive strategy with high translational potential but primarily focused on lung delivery. In this study, we found that surface charges influence tissue targeting of mRNA lipid nanoparticle (mRNA-LNP) postnebulization.
View Article and Find Full Text PDFToxicol Mech Methods
September 2025
Lung Diseases Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
Mechanistic studies have been suggested that toxic effects of bleomycin are generally attributed to formation of free radicals, mitochondria damages, oxidative stress and inflammation. For this purpose, we explored the direct exposure of bleomycin and protective effects of the betanin and vanillic acid separately against its possible toxicity in rat lung isolated mitochondria. Various mitochondrial toxicity parameters were evaluated including; succinate dehydrogenases (SDH) activity, reactive oxygen species (ROS) formation, mitochondrial swelling, mitochondrial membrane potential (MMP) collapse, malondialdehyde (MDA) and glutathione disulfide (GSSG) levels.
View Article and Find Full Text PDFNan Fang Yi Ke Da Xue Xue Bao
August 2025
Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China.
Objectives: To investigate the effect of (HP) on bleomycin (BLM)-induced pulmonary fibrosis in mice and on TGF-β1-induced human fetal lung fibroblasts (HFL1).
Methods: Thirty male C57BL/6 mice were randomly divided into control group, BLM-induced pulmonary fibrosis model group, low- and high-dose HP treatment groups (3 and 21 mg/kg, respectively), and 300 mg/kg pirfenidone (positive control) group. The effects of drug treatment for 21 days were assessed by examining respiratory function, lung histopathology, and expression of fibrosis markers in the lung tissues of the mouse models.
Ther Adv Respir Dis
September 2025
Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.
Background: Hermansky-Pudlak syndrome (HPS) is a rare disease characterized by excessive bleeding, oculocutaneous albinism, and pulmonary fibrosis (PF). However, few studies have systematically summarized the clinical characteristics of HPS.
Objectives: To summarize the clinical characteristics, risk factors of PF, radiological and pathological presentations, and prognostic factors in patients with HPS.
Korean J Physiol Pharmacol
September 2025
Department of Endocrinology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410007, China.
The progression of renal fibrosis is difficult to reverse, and Poria cocos, one of the main components of Wenyang Zhenshuai Granules, has been shown to be crucial to the development of the epithelial-mesenchymal transition (EMT). This study aimed to examine the molecular mechanism by which Poricoic Acid A (PAA) inhibited the advancement of EMT in renal tubular epithelial (RTE) cells. The protein levels of sprouty RTK signaling antagonist 2 (SPRY2) extracellular regulated protein kinases (ERK), and p-ERK were measured.
View Article and Find Full Text PDF