Publications by authors named "Noel J Aquilina"

Background: The advancement of nanotechnology underscores the imperative need for establishing in silico predictive models to assess safety, particularly in the context of chronic respiratory afflictions such as lung fibrosis, a pathogenic transformation that is irreversible. While the compilation of predictive descriptors is pivotal for in silico model development, key features specifically tailored for predicting lung fibrosis remain elusive. This study aimed to uncover the essential predictive descriptors governing nanoparticle-induced pulmonary fibrosis.

View Article and Find Full Text PDF

Source apportionment (SA) for indoor air pollution is challenging due to the multiplicity and high variability of indoor sources, the complex physical and chemical processes that act as primary sources, sinks and sources of precursors that lead to secondary formation, and the interconnection with the outdoor environment. While the major indoor sources have been recognized, there is still a need for understanding the contribution of indoor versus outdoor-generated pollutants penetrating indoors, and how SA is influenced by the complex processes that occur in indoor environments. This paper reviews our current understanding of SA, through reviewing information on the SA techniques used, the targeted pollutants that have been studied to date, and their source apportionment, along with limitations or knowledge gaps in this research field.

View Article and Find Full Text PDF

There is ample evidence from occupational studies that exposure to a mixture of Polycyclic Aromatic Hydrocarbons (PAHs) is causally associated with an increased incidence of lung cancers. In both occupational atmospheres and ambient air, PAHs are present as a mixture of many compounds, but the composition of the mixture in ambient air differs from that in the occupational atmosphere, and varies in time and space in ambient air. Estimates of cancer risk for PAH mixtures are based upon unit risks which derive from extrapolation of occupational exposure data or animal model data, and in the case of the WHO use one compound, benzo[a]pyrene as a marker for the entire mixture, irrespective of composition.

View Article and Find Full Text PDF

Three microwave-assisted digestion procedures, followed by analysis of digestates employing inductively coupled mass spectrometry (ICP-MS) were evaluated for use in the determination of elements at trace and ultra-trace levels in PM samples. Digestion procedure 1 used 2.5 mL HNO (65%) at 200 °C.

View Article and Find Full Text PDF

Aim: Most of the carcinogenic pollutants coming from tobacco smoking or other combustion processes tend to accumulate in settled house dust (SHD) over time. This study evaluated the load of these pollutants in smokers and non-smokers' houses from relatively fresh SHD collected in five different districts on the island of Malta.

Methods: An improved, efficient extraction method to obtain three fractions from a 200 mg of SHD was developed.

View Article and Find Full Text PDF

The most important tobacco-specific nitrosamine found in cigarette smoke and formed in ageing smoke after cigarettes are extinguished is 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). It is formed from nitrosation of nicotine, under particular conditions both in indoor and outdoor environments. NNK has been classified as a potent lung carcinogen which is expected to be found primarily in the particle-phase and to be stable in particulate matter.

View Article and Find Full Text PDF

School children may be exposed to secondhand smoke (SHS) either at home, in transit or in social gatherings permitting smoking in their presence. Questionnaires about SHS often underestimate prevalence and extent of exposure. A more accurate tool is the use of biomarkers such as cotinine (COT) and trans-3'-hydrocycotinine (3HC) as biomarkers of SHS exposure, alongside 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), a reduction product in the body of the tobacco-specific nitrosamine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), both potent carcinogens.

View Article and Find Full Text PDF

Concentrations of metals and metalloids derived mainly from anthropogenic activities have increased considerably in the environment. Metals might be associated with increase reactive oxygen species (ROS) damage, potentially related to several health outcomes. This study has recruited 200 adult participants, including 110 males and 90 females in Shiraz (Iran), to investigate the relationship between chronic exposure to metals and ROS damage by analyzing malondialdehyde (MDA) and 8-Oxo-2'-deoxyguanosine (8-OHdG) concentrations, and has evaluated the associations between chronic metal exposure and ROS damage using regression analysis.

View Article and Find Full Text PDF

Second Hand Smoke (SHS) has always been primarily linked with indoor pollution. To date nicotine was the favoured marker for SHS alongside measurements of particulate matter (PM) levels. As nicotine is mainly found in the gas-phase and reactive in the outdoor environment it is not ideal as a marker for the SHS-driven particulate component in PM.

View Article and Find Full Text PDF

Epidemiological studies have demonstrated significant associations between traffic-related air pollution and adverse health outcomes. Personal exposure to fine particles (PM) in transport microenvironments and their toxicological properties remain to be investigated. Commuter exposures were investigated in public transport systems (including the buses and Mass Transit Railway (MTR)) along two sampling routes in Hong Kong.

View Article and Find Full Text PDF

Over the years, the Maltese Islands have seen a marked rise in the prevalence of artificial lighting at night. The most evident type of light pollution arising from this evolution in anthropogenic night-time lighting is artificial skyglow via partial back-scattering in the atmosphere, leading to an increase in the Night Sky Brightness (NSB). The importance of understanding and quantifying the geographical distribution of the NSB is underscored by the adverse impact of light pollution on various spheres, from astronomical observation to ecology and human health.

View Article and Find Full Text PDF

This study presents an overview of the air pollution levels in the Maltese Islands including trends in particulate matter (PM), ozone (O) and nitrogen dioxide (NO) at four monitoring stations in Malta and one in Gozo between 2008 and 2017. In addition, the health impacts associated with long-term exposure to annual mean PM and NO are estimated at each site. Irrespective of the site, PM and PM concentrations show statistically significant decreasing trends while statistically significant increasing trends are noted for the coarse fraction, PM and O.

View Article and Find Full Text PDF

Machine learning techniques (MLTs) offer great power in analyzing complex data sets and have not previously been applied to non-occupational pollutant exposure. MLT models that can predict personal exposure to benzene have been developed and compared with a standard model using a linear regression approach (GLM). The models were tested against independent data sets obtained from three personal exposure measurement campaigns.

View Article and Find Full Text PDF

Thirdhand smoke (THS) is the contamination that persists after secondhand tobacco smoke has been emitted into air. It refers to the tobacco-related gases and particles that become embedded in materials, such as the carpet, walls, furniture, blankets, and toys. THS is not strictly smoke, but chemicals that adhere to surfaces from which they can be released back into the air, undergo chemical transformations and/or accumulate.

View Article and Find Full Text PDF

Personal exposures of 100 adult non-smokers living in the UK, as well as home and workplace microenvironment concentrations of 15 volatile organic compounds were investigated. The strength of the association between personal exposure and indoor home and workplace concentrations as well as with central site ambient air concentrations in medium to low pollution areas was assessed. Home microenvironment concentrations were strongly associated with personal exposures indicating that the home is the driving factor determining personal exposures to VOCs, explaining between 11 and 75% of the total variability.

View Article and Find Full Text PDF

Several models for simulation of personal exposure (PE) to particle-associated polycyclic aromatic hydrocarbons (PAH) have been developed and tested. The modeling approaches include linear regression models (Model 1), time activity weighted models (Models 2 and 3), a hybrid model (Model 4), a univariate linear model (Model 5), and machine learning technique models (Model 6 and 7). The hybrid model (Model 4), which utilizes microenvironment data derived from time-activity diaries (TAD) with the implementation of add-on variables to account for external factors that might affect PE, proved to be the best regression model (R(2) for B(a)P = 0.

View Article and Find Full Text PDF

The objective of this study was to analyse environmental tobacco smoke (ETS) and PAH metabolites in urine samples of non-occupationally exposed non-smoker adult subjects and to establish relationships between airborne exposures and urinary concentrations in order to (a) assess the suitability of the studied metabolites as biomarkers of PAH and ETS, (b) study the use of 3-ethenypyridine as ETS tracer and (c) link ETS scenarios with exposures to carcinogenic PAH and VOC. Urine samples from 100 subjects were collected and concentrations of monophenolic metabolites of naphthalene, fluorene, phenanthrene, and pyrene and the nicotine metabolites cotinine and trans-3'-hydroxycotinine were measured using liquid chromatography-tandem mass spectrometry (LC-MS/MS) to assess PAH and ETS exposures. Airborne exposures were measured using personal exposure samplers and analysed using GC-MS.

View Article and Find Full Text PDF

Background: Direct measurement of exposure to volatile organic compounds (VOCs) via personal monitoring is the most accurate exposure assessment method available. However, its wide-scale application to evaluating exposures at the population level is prohibitive in terms of both cost and time. Consequently, indirect measurements via a combination of microenvironment concentrations and personal activity diaries represent a potentially useful alternative.

View Article and Find Full Text PDF

Personal exposures to 15 volatile organic compounds (VOC) and 16 polycyclic aromatic hydrocarbons (PAH) of 100 adult nonsmokers living in three UK areas, namely London, West Midlands, and rural South Wales, were measured using an actively pumped sampler carried around by the volunteers for 5/1 (VOC/PAH) consecutive 24-h periods, following their normal lifestyle. Results from personal exposure measurements categorized by geographical location, type of dwelling, and exposure to environmental tobacco smoke (ETS) are presented. The average personal exposure concentration to benzene, 1,3-butadiene, and benzo(a)pyrene representing the main carcinogenic components of the VOC and PAH mixture were 2.

View Article and Find Full Text PDF