Publications by authors named "Juana Mari Delgado Saborit"

Background: Helicobacter pylori is a prevalent infection that may complicate pregnancy, but evidence remains limited, controversial and may not apply to all pregnant women.

Objective: This study aims to evaluate whether Helicobacter pylori is a risk factor for adverse pregnancy outcomes and to identify vulnerable subpopulations.

Study Design: Multiplex serology was utilized to measure blood levels of immunoglobulin G against eight Helicobacter pylori antigens in 1372 pregnant women from three European birth cohorts: BiB (United Kingdom), Rhea (Greece) and INMA (Spain).

View Article and Find Full Text PDF

Positive and negative artifacts of particle-phase organic carbon (p-OC) and the polycyclic aromatic hydrocarbons (PAHs) in gasoline direct injection (GDI) engine exhaust particulate matter (PM) were assessed using an integrated organic gas and particle sampler (IOGAPS). Three configurations (denuder + sorbent impregnated filters (SIFs), upstream Zefluor filter + denuder + SIFs, and standard filter pack + SIFs) were used to collect GDI exhaust samples at cold start and highway cruise operating conditions with no aftertreatment. Approximately 35% of the measured GDI p-OC was attributed to positive artifacts; negative artifacts were not detectable due to low overall SVOC concentrations.

View Article and Find Full Text PDF

Cerium oxide nanoparticles (nCe) are used as a fuel-borne catalyst in diesel engines to reduce particulate emissions, yet the environmental and human health impacts of the exhaust particles are not well understood. To bridge the gap between emission measurements and ambient impacts, size-resolved measurements of particle composition and mass concentration have been performed in Newcastle-upon-Tyne, United Kingdom, where buses have used an nCe additive since 2005. These observations show that the noncrustal cerium fraction thought to be associated with the use of nCe has a mass concentration ∼ 0.

View Article and Find Full Text PDF

The aim of this study was to investigate the influence of an urban area on ultrafine particle (UFP) concentration in nearby surrounding areas. We assessed how downwind and upwind conditions affect the UFP concentration at a site placed a few kilometres from the city border. Secondarily, we investigated the relationship among other meteorological factors, temporal variables and UFP.

View Article and Find Full Text PDF

Several models for simulation of personal exposure (PE) to particle-associated polycyclic aromatic hydrocarbons (PAH) have been developed and tested. The modeling approaches include linear regression models (Model 1), time activity weighted models (Models 2 and 3), a hybrid model (Model 4), a univariate linear model (Model 5), and machine learning technique models (Model 6 and 7). The hybrid model (Model 4), which utilizes microenvironment data derived from time-activity diaries (TAD) with the implementation of add-on variables to account for external factors that might affect PE, proved to be the best regression model (R(2) for B(a)P = 0.

View Article and Find Full Text PDF

The objective of this study was to analyse environmental tobacco smoke (ETS) and PAH metabolites in urine samples of non-occupationally exposed non-smoker adult subjects and to establish relationships between airborne exposures and urinary concentrations in order to (a) assess the suitability of the studied metabolites as biomarkers of PAH and ETS, (b) study the use of 3-ethenypyridine as ETS tracer and (c) link ETS scenarios with exposures to carcinogenic PAH and VOC. Urine samples from 100 subjects were collected and concentrations of monophenolic metabolites of naphthalene, fluorene, phenanthrene, and pyrene and the nicotine metabolites cotinine and trans-3'-hydroxycotinine were measured using liquid chromatography-tandem mass spectrometry (LC-MS/MS) to assess PAH and ETS exposures. Airborne exposures were measured using personal exposure samplers and analysed using GC-MS.

View Article and Find Full Text PDF

Background: Direct measurement of exposure to volatile organic compounds (VOCs) via personal monitoring is the most accurate exposure assessment method available. However, its wide-scale application to evaluating exposures at the population level is prohibitive in terms of both cost and time. Consequently, indirect measurements via a combination of microenvironment concentrations and personal activity diaries represent a potentially useful alternative.

View Article and Find Full Text PDF

Personal exposures to 15 volatile organic compounds (VOC) and 16 polycyclic aromatic hydrocarbons (PAH) of 100 adult nonsmokers living in three UK areas, namely London, West Midlands, and rural South Wales, were measured using an actively pumped sampler carried around by the volunteers for 5/1 (VOC/PAH) consecutive 24-h periods, following their normal lifestyle. Results from personal exposure measurements categorized by geographical location, type of dwelling, and exposure to environmental tobacco smoke (ETS) are presented. The average personal exposure concentration to benzene, 1,3-butadiene, and benzo(a)pyrene representing the main carcinogenic components of the VOC and PAH mixture were 2.

View Article and Find Full Text PDF