A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Comparative modeling approaches for personal exposure to particle-associated PAH. | LitMetric

Comparative modeling approaches for personal exposure to particle-associated PAH.

Environ Sci Technol

Division of Environmental Health and Risk Management, School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom.

Published: December 2010


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Several models for simulation of personal exposure (PE) to particle-associated polycyclic aromatic hydrocarbons (PAH) have been developed and tested. The modeling approaches include linear regression models (Model 1), time activity weighted models (Models 2 and 3), a hybrid model (Model 4), a univariate linear model (Model 5), and machine learning technique models (Model 6 and 7). The hybrid model (Model 4), which utilizes microenvironment data derived from time-activity diaries (TAD) with the implementation of add-on variables to account for external factors that might affect PE, proved to be the best regression model (R(2) for B(a)P = 0.346, p < 0.01; N = 68). This model was compared with results from two machine learning techniques, namely decision trees (Model 6) and neural networks (Model 7), which represent an innovative approach to PE modeling. The neural network model was promising in giving higher correlation coefficient results for all PAH (R(2) for B(a)P = 0.567, p < 0.01; N = 68) and good performance with the smaller test data set (R(2) for B(a)P = 0.640, p < 0.01; N = 23). Decision tree accuracies (Model 6) which assess how precisely the algorithm can determine the correct classification of a PE concentration range indicate good performance, but this is not comparable to the other models through R(2) values. Using neural networks (Model 7) showed significant improvements over the performance of hybrid Model 4 and the univariate general linear Model 5 for test samples (not used in developing the models). The worst performance was given by linear regression Models 1 to 3 based solely on home and workplace concentrations and time-activity data.

Download full-text PDF

Source
http://dx.doi.org/10.1021/es102529kDOI Listing

Publication Analysis

Top Keywords

model
17
hybrid model
12
model model
12
modeling approaches
8
personal exposure
8
exposure particle-associated
8
models
8
linear regression
8
regression models
8
models model
8

Similar Publications