Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Several studies have reported associations between specific heavy metals and essential trace elements and acute myocardial infarction (AMI). However, there is limited understanding of the relationships between trace elements and AMI in real-life co-exposure scenarios, where multiple elements may interact simultaneously. This cross-sectional study measured serum levels of 56 trace elements using inductively coupled plasma mass spectrometry. We identified individual trace elements linked to AMI using four feature selection methods and evaluated their associations with AMI prevalence and severity through multiple-element logistic regression. Restricted cubic spline analysis was employed to examine non-linear associations. Additionally, we explored the associations between trace element mixtures and AMI prevalence and severity using Bayesian kernel machine regression (BKMR) and element risk score (ERS). Finally, we investigated the potential mechanisms linking trace element exposure to AMI. We detected stable positive associations and linear relationships between Cu and Rb and AMI prevalence and severity. Furthermore, lower Fe concentrations were associated with higher AMI prevalence, while higher Sb concentrations were linked to greater AMI severity. Both BKMR and ERS models indicated positive associations between trace element mixtures and AMI prevalence and severity. Mediation analysis suggested that high-sensitivity C-reactive protein partially mediated the associations between trace elements and AMI prevalence and severity. We provide the first epidemiological evidence of the associations between serum trace element mixtures and AMI prevalence and severity. Under conditions of trace element co-exposure, Cu, Rb, Fe, and Sb were closely associated with AMI. Additionally, our results indicate that hsCRP (inflammation) may be a potential mechanism linking trace elements to AMI.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12316721PMC
http://dx.doi.org/10.1007/s12011-024-04509-6DOI Listing

Publication Analysis

Top Keywords

trace elements
28
prevalence severity
28
ami prevalence
28
trace element
20
ami
14
trace
12
elements ami
12
associations trace
12
element mixtures
12
mixtures ami
12

Similar Publications

Antibacterial mode of action of thyme white (Thymus vulgaris L.) essential oil and its constituents, thymol and carvacrol against Agrobacterium tumefaciens via down-regulation of manganese transport genes, sitABCD and mntH.

Pestic Biochem Physiol

November 2025

Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Agriculture and Life Science, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of

In this study, we evaluated the antibacterial activities of plant essential oils (EOs) from the Lamiaceae family against Agrobacterium tumefaciens to find new eco-friendly antimicrobials. Thymus vulgaris L. (thyme white) EO demonstrated the most potent fumigant antibacterial activity among these.

View Article and Find Full Text PDF

Foliar application of selenium nanoparticles enhance quality and mitigate negative plant-soil feedback in Panax notoginseng by modulating plant-microbiota interactions.

Pestic Biochem Physiol

November 2025

State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China; Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, College of Plant Protection, Yunnan Agricultural University, Kunming, China; China France

Developing a practical strategy to enhance the quality of medicinal herb while alleviating negative plant-soil feedback (NPSF) is critical for agriculture. In this study, we investigated the effects of selenium nanoparticles (SeNPs) on Panax notoginseng through a two-year field experiment. Four treatments were established: a control (SeNPs_0) and three SeNPs concentrations (3, 5, and 10 mg/L), which were foliar-sprayed every 15 days for a total of six applications.

View Article and Find Full Text PDF

A ratiometric dual-channel fluorescent probe for selective Zn/Cd sensing: Applications in food quality control, real-time monitoring in living cells, and mice.

Anal Chim Acta

November 2025

State Key Laboratory of Materials-oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, PR China; Zhangjiagang Institute of Nanjing Tech University, Suzhou, 215600, PR China. Electronic address:

Background: Zinc (Zn) and cadmium (Cd) ions are ubiquitous in industrial and daily life. Despite their critical impact on food safety and human health, current probes face significant limitations in simultaneously detecting both ions in complex food matrices.

Results: Herein, we successfully developed a pyrene-based FRET ratiometric fluorescent probe QP for the highly selective detection of Zn and Cd.

View Article and Find Full Text PDF

Background: Recent advancements in cancer therapeutics have catalyzed the development of noninvasive treatment modalities, including the utilization of fluorescent chemotherapeutic agents. These agents offer dual functionality, enabling targeted drug delivery, real-time tumor imaging, and personalized therapy monitoring. Such capabilities are instrumental in the progression toward more precise and effective cancer interventions.

View Article and Find Full Text PDF

An adaptive and label-free colorimetric assay for EDTA using copper(II)-aptamer complexes as soft nanozymes.

Anal Chim Acta

November 2025

School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China; Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, Hefei, 230009, China; Intelligent Interconnected Systems Laboratory of A

Background: Copper is a vital trace element that plays a crucial role in various physiological processes due to its ability to exist in multiple oxidation states. Inspired by natural enzymes, researchers have developed copper-based nanozymes that mimic enzyme functions, offering cost-effective and stable alternatives to traditional enzymes. Despite their promising properties, the design and synthesis of these nanozymes can be complex and challenging.

View Article and Find Full Text PDF