Temperature-Dependent Structural Evolution of Ruddlesden-Popper Bilayer Nickelate LaNiO.

Inorg Chem

Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States.

Published: January 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A recent article ( 2024, 146, 7506-7514) details a pressure-temperature (-) phase diagram for the Ruddlesden-Popper bilayer nickelate LaNiO (LNO-2222) using synchrotron X-ray diffraction. This study identifies a phase transition from (#63) to (#69) within the temperature range of 104-120 K under initial pressure and attributes the 4/ (#139) space group to the structure responsible for the superconductivity of LNO-2222. Herein, we examine the temperature-dependent structural evolution of LNO-2222 single crystals at ambient pressure. Contrary to the symmetry increase and the established - phase boundary, we observe an enhancement in the reflections as temperature decreases. This work not only delivers high-quality crystallographic data of LNO-2222 using laboratory X-rays across various temperatures but also enhances the understanding of the complex crystallographic behavior of this system, contributing insights to further experimental and theoretical explorations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11752513PMC
http://dx.doi.org/10.1021/acs.inorgchem.4c03042DOI Listing

Publication Analysis

Top Keywords

temperature-dependent structural
8
structural evolution
8
ruddlesden-popper bilayer
8
bilayer nickelate
8
nickelate lanio
8
evolution ruddlesden-popper
4
lanio article
4
article 2024
4
2024 146
4
146 7506-7514
4

Similar Publications

The formation of heterostructure interfaces from quantum dots (or nanocrystals) and lower-dimensional (2D or quasi-2D) materials enables interfacial and optoelectronic property tuning. However, this strategy has not been sufficiently characterized, for example, the application of cesium halide nanocrystals to quasi-2D perovskite structures is underexplored, and the mechanisms of the resulting structural modifications and specific nanocrystal roles are not fully understood. Herein, the effects of postsynthetically surface-modifying quasi-2D perovskite films with CsX ( = Cl, Br, I) nanocrystals are examined to bridge this gap.

View Article and Find Full Text PDF

Insight into the structural deterioration of biosynthesized holoferritin upon thermal treatment.

Int J Biol Macromol

September 2025

School of Food and Biological Engineering, Hefei University of Technology, Engineering Research Center of Bio-Process, Ministry of Education, Hefei 230601, Anhui, China; Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province, Hefei University of Technology, Hefei 23

Holoferritin is considered a promising iron supplement, yet its preparation is challenging due to low extraction efficiencies from natural sources and the potential for structural damage during in vitro mineralization. This study reported the in vivo biosynthesis of a highly stable holoferritin (bs-holoFt) in Escherichia coli a high iron-loading capacity (1213 Fe atoms/protein) and systematically characterized the impact of heat treatments (70-100 °C) on the protein's multi-level structure and dual functions. Results showed a clear, temperature-dependent degradation pathway, initiated by the loss of α-helical content (decreased from 77.

View Article and Find Full Text PDF

Functional inhibition of wheat germ agglutinin by glycodendrimers: Interplay of affinity, architecture, and temperature.

Carbohydr Res

September 2025

Area for Molecular Function, Division of Material Science, Graduate School of Science and Engineering, Saitama University, Sakura, Saitama, 338-8570, Japan; Medical Innovation Research Unit (MiU), Advanced Institute of Innovative Technology (AIIT), Saitama University, Sakura, Saitama, 338-8570, Japa

Multivalent interactions between lectins and glycans are crucial for biological recognition; however, predicting functional inhibition based on binding affinity remains challenging. Herein, we investigated a series of structurally defined N-acetylglucosamine (GlcNAc)-functionalized dendrimers (1a-1c and 2a-2c) to examine how spatial orientation and temperature influenced the inhibition of wheat germ agglutinin (WGA). Using enzyme-linked lectin assays (ELLAs), we observed biphasic inhibition profiles for all the dendrimers, characterized by an initial enhancement of WGA binding at low concentrations, followed by effective inhibition at higher concentrations.

View Article and Find Full Text PDF

Kappa carrageenan (KC), a sulfated polysaccharide derived from red seaweed, exhibits distinct gelation properties that are influenced by ionic strength and thermal conditions. While its behavior in aqueous media is well-established, understanding KC's gelation mechanisms in non-aqueous solvents (like glycerol) remains limited. This study investigates the conformational and rheological properties of kappa carrageenan in glycerol, focusing on the effects of sodium salts (NaCl, NaHPO, NaPO) at varying concentrations and preparation temperatures (60 °C and 80 °C).

View Article and Find Full Text PDF

Manipulating magnetism in two-dimensional (2D) van der Waals (vdW) materials arouses considerable and ongoing interest in fundamental physics and potential applications in next-generation spintronics. Here, we have investigated the underlying electronic structures of bulk vdW magnets CrTe2 and NaCrTe2, by carrying out high-resolution angle-resolved photoemission spectroscopy (ARPES) studies and first-principles calculations. In CrTe2, strong out-of-plane band dispersions and metallic Fermi surface are observed, accompanied by temperature-dependent ferromagnetic (FM) energy gain behavior which directly confirms its itinerant origin.

View Article and Find Full Text PDF