Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Polychlorinated biphenyls (PCBs) are persistent organic pollutants and are emitted during e-waste activities. Once they enter into the environment, PCBs could pose toxic effects to environmental compartments and public health. Reductive dechlorination offers a sustainable solution to manage the PCBs-contaminated environment. Under anaerobic conditions, reductive dechlorination of PCBs occurs, and PCBs congeners serve as potential electron acceptors which stimulate the growth of PCBs-dechlorinating microorganisms. In this review, microbial and chemically induced reductive dechlorination was summarized. During anaerobic conditions, highly chlorinated PCBs undergo reductive dechlorination and are converted into less chlorinated PCBs. The mechanisms involved in reductive dechlorination are mainly attacks on meta and/or para chlorines of PCBs mixtures in a contaminated environment and ortho dechlorination of PCBs. Based on methods, PCBs removal efficiency was as chemical > biological. Activated carbon (90%) showed more treatment efficiency than bacterial (84%). The review suggested that microbial remediation is a slow process; however, efficiency could be enhanced after amendments. Different microorganisms appear to be responsible for different dechlorination activities and the occurrence of various dehalogenation routes. However, PCBs dechlorination rate, extent, and route are influenced by pH, temperature, availability of carbon sources, and the presence or absence of H or competing electron acceptors and other electron donors.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-024-35831-0DOI Listing

Publication Analysis

Top Keywords

reductive dechlorination
24
pcbs
10
dechlorination
9
microbial chemically
8
chemically induced
8
induced reductive
8
polychlorinated biphenyls
8
anaerobic conditions
8
dechlorination pcbs
8
electron acceptors
8

Similar Publications

Silicate Enhances the Long-Term Dechlorination Performance of Sulfidized Zero-Valent Iron: Trade-Off between Passivation and In Situ Oxidation.

Environ Sci Technol

September 2025

MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.

Sulfidized zero-valent iron (S-ZVI) holds promise in the remediation of chlorinated hydrocarbons. However, S-ZVI is susceptible to corrosion in aquifers with elevated dissolved oxygen (DO) levels. This study demonstrates, for the first time, that a trade-off between the passivation and oxidative corrosion of aged S-ZVI can be achieved in the presence of silicate to promote its dechlorination performance on trichloroethylene.

View Article and Find Full Text PDF

Aerobic and anaerobic biodegradation of 1,2,3-trichloropropane and 1,2-dichloropropane: implications for bioremediation.

Biodegradation

September 2025

Biotechnology Development and Applications Group, Aptim Federal Services, LLC, Lawrenceville, NJ, USA.

1,2,3-Trichloropropane (1,2,3-TCP) is a suspected human carcinogen and a persistent emerging contaminant in groundwater and drinking water. 1,2,3-TCP was historically used as a solvent for cleaning and maintenance, paint and varnish removal, and degreasing, but its sources also include chemical manufacturing processes and application of soil fumigants. The California Department of Public Health (CDPH) has established a state maximum contaminant level (MCL) of 0.

View Article and Find Full Text PDF

SC05-UT is an anaerobic, heterogenous microbial enrichment culture that reduces chloroform to dichloromethane through reductive dechlorination, which it further mineralizes to carbon dioxide. This dichloromethane mineralization yields electron equivalents that are used to reduce chloroform without the addition of exogenous electron donor. By studying this self-feeding chloroform-amended culture and a dichloromethane-amended enrichment subculture (named DCME), we previously found the genomic potential to perform both biodegradation steps in two distinct strains: SAD and Dehalobacter alkaniphilus DAD.

View Article and Find Full Text PDF

Vacancy Engineered Zero-Valent Iron Steer Hydrogen Spillover toward Per- and Polychlorinated Organics Rapid Complete Dechlorination.

Adv Sci (Weinh)

September 2025

State Key Laboratory of Urban-rural Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China.

The elevated toxicity and persistent bioaccumulative propensity of per- and polychlorinated organics (PCOs) pose a substantial environmental hazard; however, current dechlorination technologies encounter challenges in surmounting the cumulative reductive inertia inherent to PCOs, resulting in low dechlorination efficiency and the persistence of ecotoxicity. Here, a vacancy-engineered zero-valent iron (ZVI) is proposed to address this challenge. The surface-modified carbon vacancies can extract outward-flowing electrons from lattice copper-doped ZVI (CvCu-ZVI), which react with trapped protons to generate reactive hydrogen in situ that subsequently spills over onto ZVI.

View Article and Find Full Text PDF

sp. nov. NIT-TF6 Isolated from Trichloroethene-Dechlorinating Culture with Formate.

Microorganisms

August 2025

Department of Civil and Environmental Engineering, Nagoya Institute of Technology (Nitech), Gokiso-Cho, Showa-Ku, Nagoya 466-8555, Japan.

A strictly anaerobic bacterium denoted as strain NIT-TF6 of the genus was isolated from a trichloroethene-dechlorinating culture with formate. Cells were straight rods of 1.6-6 µm long and 0.

View Article and Find Full Text PDF