Self-driven electrochemical system for struvite and energy recovery from digested wastewater: Device optimization strategy and long-term operation.

J Environ Manage

School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Key Laboratory of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China.

Published: January 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A self-driven electrochemical system (SDES) was utilized to treat anaerobic digestate wastewater, aiming to achieve wastewater resource utilization and energy generation. The efficiencies of pollutant removal, resource recovery, and energy production were enhanced by adjusting device parameters (anode area, external resistance, and electrode spacing). The high pollutant removal rates and struvite purity were achieved with the magnesium anode area of 15 cm, external resistance of 10 Ω, and electrode spacing of 10 cm. The appropriate anode area (3.0 cm), external resistance (50 Ω), and electrode spacing (7.5 cm) were prone to achieve high electric energy output. For one cycle, the removal rates of PO-P and NH-N were 95.37% and 39.10%, respectively, with an average output power of 50.98W/m³, and 0.0275g of struvite was recovered(50 ml digested wastewater). For the long-term operation (20 cycles), the average PO-P and NH-N removal rates were 89.3% and 23.4%, the CV (Coefficient of Variation)for PO-P and NH-N were 0.1998 and 0.0504, and the average output power was 8.90 W/m. The SDES showed satisfactory performance without replacing the magnesium anode. Based on the comprehensive efficiency of pollutant removal, resource recovery, and energy production, a replacement cycle of 20 cycles for magnesium anode was determined. In summary, the SDES for treating the anaerobic digested wastewater was demonstrated with stability and efficiency.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2024.123904DOI Listing

Publication Analysis

Top Keywords

digested wastewater
12
pollutant removal
12
anode area
12
external resistance
12
electrode spacing
12
removal rates
12
magnesium anode
12
po-p nh-n
12
self-driven electrochemical
8
electrochemical system
8

Similar Publications

The aim of the study was to evaluate the toxic metals (TMs) pollution, bioaccumulation and its potential health risk via consumption of different vegetables irrigated by different water sources released from industrial estates of Khyber Pakhtunkhwa. Water (fresh and waste), soil and vegetables samples were collected in triplicates and acid digested. Digestion of samples were followed by evaporation and filtration and then assessed for TMs via atomic absorption spectrophotometer.

View Article and Find Full Text PDF

Tracking mitigation and expression patterns of the antibiotic resistome during full-scale livestock wastewater treatment: Comparison between summer and winter conditions.

Water Res

August 2025

Westlake Laboratory of Life Sciences and Biomedicine, Center for Infectious Disease Research, School of Life Sciences, Westlake University, Hangzhou 310024, China; Zhejiang Provincial Key Laboratory of Intelligent Low-Carbon Biosynthesis, Research Center for Industries of the Future, School of Engin

Livestock wastewater is a critical reservoir of antibiotic resistance genes (ARGs) that poses significant public health risks. This study comprehensively evaluated the seasonal dynamics and associated risks of ARGs in a full-scale livestock wastewater treatment plant using an integrated metagenomic and metatranscriptomic approach. The results showed that untreated livestock wastewater harbored high abundance (4.

View Article and Find Full Text PDF

Long-term effects and mechanisms of sulfur-modified nanoscale zero-valent iron in enhancing anaerobic treatment of highly toxic wastewater containing 2,4-dichlorophenol.

Bioresour Technol

September 2025

State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of Environment, Nanjing University, Nanjing 210023, China. Electronic address:

Sulfur-modified nanoscale zero-valent iron (S-nZVI) has emerged as a promising additive for enhancing anaerobic treatment of refractory wastewater. However,its long-term effectiveness and role in toxic shock resistance remain unclear. Herein, S-nZVI was first applied to continuous-flow anaerobic reactors treating wastewater containing 2,4-dichlorophenol (2,4-DCP).

View Article and Find Full Text PDF

Dynamic control of thermal hydrolysis to maximize net energy recovery from sewage sludge based on machine learning.

Bioresour Technol

September 2025

College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, China. Electronic address:

Thermal hydrolysis pretreatment coupled with anaerobic digestion (THP-AD) substantially improves the energy recovery from sludge; however, its high thermal energy input often undermines overall system efficiency. This study developed a machine-learning-driven optimisation framework. The results indicated that, compared to the other three models, extreme gradient boosting achieved the highest predictive performance (R > 0.

View Article and Find Full Text PDF

The overlooked pathway: A systematic review on sewage sludge treatment as a critical secondary source of terrestrial micro(nano)plastics.

Sci Total Environ

September 2025

Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China. Electronic address:

Sewage sludge has long been believed as an essential sink for microplastics (MPs), with concentrations up to 1380 particles/kg dry weight. Considering that MP residues in present sewage sludge are predominantly aged, their surface characteristics have been modified, with specific surface area ranging from 1 m/g to 5 m/g and a carbonyl index increasing from 0.2 to 1.

View Article and Find Full Text PDF