Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Coastal/offshore renewable energy sources combined with seawater splitting offer an attractive means for large-scale H electrosynthesis in the future. However, designing anodes proves rather challenging, as surface chlorine chemistry must be blocked, particularly at high current densities (). Additionally, waste seawater with increased salinity produced after long-term electrolysis would impair the whole process sustainability. Here, we convert seawater to O selectively, on hydroxides, by building phytate-based expanded negative electrostatic networks (ENENs) with electrostatically repulsive capacities and higher negative charge coverage ranges than those of common inorganic polyatomic anions. With surface ENENs, even typically unstable CoFe hydroxides perform nicely toward alkaline seawater oxidation at activities of >1 A cm. CoFe hydroxides with phytate-based ENENs exhibit prolonged lifespans of 1000 h at of 1 A cm and 900 h at of 2 A cm and thus rival the best seawater oxidation anodes. Direct introduction of trace phytates to seawater weakens corrosion tendency on conventional CoFe hydroxides as well, extending the life of hydroxides by ∼28 times at of 2 A cm. A wide range of materials all obtain prolonged lifetimes in the presence of ENENs, validating universal applicability. Mechanisms are studied using theoretical computations under working conditions and / characterizations. We demonstrate a potentially viable way to sustainably reutilize high-salinity wastewater, which is a long-standing but neglected issue. Series-connected devices exhibit good resistance to low temperature operation and are more eco-friendly than current organic electrolyte-based energy storage devices.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.4c14502DOI Listing

Publication Analysis

Top Keywords

seawater oxidation
12
cofe hydroxides
12
expanded negative
8
negative electrostatic
8
seawater
8
hydroxides
5
electrostatic network-assisted
4
network-assisted seawater
4
oxidation high-salinity
4
high-salinity seawater
4

Similar Publications

High-entropy spinel (FeCoNiMnCr)O nanoparticles supported on carbon nanotubes for enhanced electrochemical seawater oxidation.

Chem Commun (Camb)

September 2025

Key Laboratory of Special Functional Materials for Ecological Environment and Information (Ministry of Education), School of Material Science and Engineering, Hebei University of Technology, Tianjin 300130, P. R. China.

High-performance, low-cost electrocatalysts are essential for freshwater-independent seawater electrolysis. We design a SWCNT-supported (FeCoNiMnCr)O high-entropy spinel oxide by a hydrothermal method and air-firing, where the conductive network enhances charge transfer and active site exposure. The catalyst achieves 282 mV@10 mA cm with 100 h stability in alkaline seawater.

View Article and Find Full Text PDF

Suppression of passivation on NiMoO4 microrod by ultrathin metal-organic-framework nanosheets in urea-assisted natural seawater splitting.

J Colloid Interface Sci

September 2025

Center for Innovative Materials and Architectures, Ho Chi Minh City 700000, Viet Nam; Vietnam National University, Ho Chi Minh City 700000, Viet Nam. Electronic address:

Organic nucleophile-assisted natural seawater electrolysis has emerged as a promising strategy for green hydrogen production by significantly reducing energy consumption. Among Ni-based electrocatalysts, NiMoO has drawn attention for its activity in both oxygen evolution reaction (OER) and urea oxidation reaction (UOR). However, its practical application is hindered by severe surface passivation, particularly at industrial current densities (e.

View Article and Find Full Text PDF

Freezing point depression due to high salt concentration is crucial for liquid water to exist on cold worlds, expanding special regions where habitats are plausible. Determination of the growth tolerances of terrestrial microbes in analog systems impacts planetary protection protocols aimed at preventing interference with life detection missions or potential native ecosystems on celestial bodies. We measured the salinity tolerances of 18 salinotolerant bacteria (Bacillus, Halomonas, Marinococcus, Nesterenkonia, Planococcus, Salibacillus, and Terribacillus).

View Article and Find Full Text PDF

Large-scale geological processes shape microbial habitats and drive the evolution of life on Earth. During the Oligocene, convergence between Africa and Europe led to the opening of the Western Mediterranean Basin, a deep-ocean system characterized by fluid venting, oxygen depletion, and the absence of benthic fauna. In this extreme, inhospitable seafloor environment, fusiform objects known as Tubotomaculum formed, whose origin has long remained controversial.

View Article and Find Full Text PDF

Constructing heterogeneous dual-site catalysts is anticipated for oxygen evolution reaction (OER). However, compared to the adsorbate evolution mechanism (AEM), the triggering oxide pathway mechanism (OPM) for catalysts poses challenges due to elusive structural evolution and low intrinsic activity. Herein, considering the distinct adsorption propensity of heterogeneous Ni-Fe sites toward differential intermediates (OH-O), the PO-induced deep reconstruction triggers a dual-site Ni-Fe discrepant oxide pathway mechanism (DOPM) for R-PO-NiCoFeOOH.

View Article and Find Full Text PDF