Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Microglia, the central nervous system's primary immune cells, play a key role in the progression of cerebral ischemic stroke, particularly through their involvement in pyroptosis. The long non-coding RNA taurine up-regulated gene 1 (Tug1) is elevated during ischemic stroke and is critical in driving post-stroke neuroinflammation. However, the underlying molecular mechanisms remain unclear. This study explores the biological role of Tug1 and its potential mechanisms in regulating pyroptosis in microglia. We utilized an in vivo photothrombosis (PT) mice model and an in vitro oxygen-glucose deprivation and reperfusion (OGD/R) BV2 cell model to explore the mechanisms underlying ischemic stroke. Initially, we assessed the expression levels of Tug1 in the OGD/R model in vitro and the PT model in vivo. Subsequently, we investigated the impact of Tug1 on microglial pyroptosis by knocking down Tug1, silencing the PTEN-induced putative kinase 1 (Pink1) expression, and employing the mitophagy inhibitor mdivi-1. Tug1 exacerbated microglial pyroptosis by inhibiting mitophagy in both in vivo and in vitro models. The increase in mitophagy observed following Tug1 knockdown was reversed by either silencing Pink1 expression or using the mitophagy inhibitor mdivi-1. This reversal resulted in exacerbated pyroptosis and worsened neurological damage. Further mechanistic studies revealed that Tug1 knockdown significantly reduced microglial pyroptosis and alleviated neuronal damage by enhancing PINK1/Parkin-mediated mitophagy. For the first time, this study reveals that Tug1 promotes hypoxia-induced microglial pyroptosis by inhibiting PINK1/Parkin-mediated mitophagy, potentially providing a promising therapeutic target for ischemic inflammatory injury.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10753-024-02219-8DOI Listing

Publication Analysis

Top Keywords

microglial pyroptosis
20
pink1/parkin-mediated mitophagy
12
ischemic stroke
12
pyroptosis
8
tug1
8
model vitro
8
pink1 expression
8
mitophagy inhibitor
8
inhibitor mdivi-1
8
pyroptosis inhibiting
8

Similar Publications

Traumatic spinal cord injury (TSCI) is a devastating neurological condition with limited therapeutic options and a high likelihood of permanent disability. Among the multifaceted secondary injury mechanisms triggered by TSCI, pyroptosis-an inflammatory form of programmed cell death-has emerged as a key pathological process. In particular, microglial pyroptosis plays a pivotal role in exacerbating neuroinflammation and disrupting tissue homeostasis, thereby amplifying the secondary injury cascade.

View Article and Find Full Text PDF

Perioperative neurocognitive disorders (PNDs) are common complications following surgery, especially in elderly patients, and are characterized by memory loss, attention deficits, and impaired executive function. The pathogenesis of PNDs involves a complex interplay of neuroinflammation, neurotransmitter imbalance, epigenetic modifications, and gut-brain axis disruption. This review summarizes the latest findings on the mechanisms underlying PNDs, with a focus on microglial activation, interleukin imbalance, and NLRP3 inflammasome-mediated pyroptosis.

View Article and Find Full Text PDF

Microglial pyroptosis in neurological disorders: mechanistic crosstalk, metabolic triggers, and therapeutic frontiers.

Metab Brain Dis

August 2025

Department of Bioengineering and Biotechnology, School of Biosciences & Technology, Galgotias University, Greater Noida, 203201, Uttar Pradesh, India.

Neurodegenerative diseases (NDDs) are characterized by the progressive decline of neuronal structure and function, with neuroinflammation and neuronal death as key pathogenic features. Pyroptosis, a highly inflammatory kind of programmed cell death (PCD) facilitated by gasdermin (GSDM) proteins and inflammasome activation, has garnered significant attention among new mechanisms. The increased expression of pyroptosis-related proteins, frequently co-localized with misfolded protein aggregates, indicates a crucial involvement in the advancement of different NDDs.

View Article and Find Full Text PDF

Following spinal cord injury (SCI), pyroptosis plays a significant role in regulating neuroinflammation during the secondary phase of injury. Although 1,8-cineole possesses anti-inflammatory effects, its role in SCI and underlying molecular mechanisms remains unclear. This study revealed that 1,8-cineole promoted motor function recovery in spinal cord-injured rats, reduced NLRP3 inflammasome-mediated microglial pyroptosis and activation, enhanced neuronal regeneration, and suppressed neuronal apoptosis and glial scar formation.

View Article and Find Full Text PDF

CircFGFR2 induces astrocyte pyroptosis to promote ischemic stroke.

Neuroscience

August 2025

Department of Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623 Guangzhou, China. Electronic address:

Stroke is the second leading cause of death worldwide. Organoids, as disease models that closely mimic human physiology and pathology, are highly suitable for investigating the role of neural cells in brain diseases. However, there are few reports on circRNA research based on cerebral organoid stroke models.

View Article and Find Full Text PDF