98%
921
2 minutes
20
The study investigates the development and characterization of dual-loaded niosomes incorporated into ion-sensitive in situ gel as a potential drug delivery platform for ophthalmic application. Cannabidiol (CBD) and epigallocatechin-3-gallate (EGCG) simultaneously loaded niosomes were prepared via the thin film hydration (TFH) method followed by pulsatile sonication and were subjected to comprehensive physicochemical evaluation. The optimal composition was included in a gellan gum-based in situ gel, and the antimicrobial activity, in vitro toxicity in a suitable corneal epithelial model (HaCaT cell line), and antioxidant potential of the hybrid system were further assessed. Dual-loaded niosomes based on Span 60, Tween 60, and cholesterol (3.5:3.5:3 mol/mol) were characterized by appropriate size (250 nm), high entrapment efficiency values for both compounds (85% for CBD and 50% for EGCG) and sustained release profiles. The developed hybrid in situ gel exhibited suitable rheological characteristics to enhance the residence time on the ocular surface. The conducted microbiological studies reveal superior inhibition of methicillin-resistant (MRSA) adhesion by means of the niosomal in situ gel compared to the blank gel and untreated control. Regarding the antioxidant potential, the dual loading of CBD and EGCG in niosomes enhances their protective properties, and the inclusion of niosomes in gel form preserves these effects. The obtained outcomes indicate the developed niosomal in situ gel as a promising drug delivery platform in ophthalmology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11675977 | PMC |
http://dx.doi.org/10.3390/gels10120816 | DOI Listing |
J Vis Exp
August 2025
Physiology Unit, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases.
Resistance arteries, which include small arteries and arterioles, play essential roles in regulating blood pressure and tissue perfusion. Dysfunction in these arteries can lead to various cardiovascular conditions such as hypertension, atherosclerosis, and heart failure, as well as neurovascular conditions. The examination of human resistance arteries is crucial for understanding cardiovascular disease mechanisms and developing targeted therapeutic strategies.
View Article and Find Full Text PDFDrug Dev Ind Pharm
September 2025
Department of Pharmaceutics, Mallige College of Pharmacy, Silvepura, Bangalore -560090.
ObjectivesThis review aims to explore gelling drug delivery systems with emphasis on formulation strategies, gelation mechanisms, administration routes, and therapeutic benefits. It also seeks to understand the role of different polymers in achieving optimal gelation and drug release profiles. Additionally, the review aims to identify current research gaps and highlight potential areas for future development and clinical translation.
View Article and Find Full Text PDFACS Nano
September 2025
School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China.
Although traditional immunogenic cell death (ICD) inducers generate vaccines (ISV) to potentiate antiprogrammed cell death ligand 1 (anti-PDL1) antibodies therapy, their efficacy remains limited. This limitation may be attributed to the physical barrier created by extracellular matrix (ECM) and immunosuppressive metabolic barrier mediated by adenosine. Here, we report an oncolytic polymer (OP), a well-designed ε-polylysine derivative with ICD-inducing capacity, which can simultaneously facilitate the release of endogenous ECM-degrading enzyme, Cathepsin B.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350000, China; Research Center of Dental Esthetics and B
This study examined the pH-dependent (3, 5, and 7) regulation of matrix metalloproteinase (MMP) activity by cathepsin K (catK) and glycosaminoglycans (GAGs) using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), fluorescence assays, and human dentin slice experiments. The direct effects of catK were evaluated in the catK-active, catK-deficient, and odanacatib (ODN)-inhibited groups, whereas indirect GAG/ tissue inhibitor of metalloproteinase (TIMP)-mediated regulation was assessed in the catK-active, ODN-inhibited, and chondroitin sulfate (CS)-treated groups through dimethylmethylene blue (DMMB) assays, in situ zymography, and immunofluorescence staining. CatK directly activated MMP-2 (62 kDa) and MMP-9 (82 kDa) at all pH values, with no activation observed in the ODN-inhibited or catK-deficient groups.
View Article and Find Full Text PDFExp Cell Res
September 2025
State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu City 610041, China. Electronic address:
Adipose-derived mesenchymal stem cells (ADSCs) hold great promise for bone tissue repair and regeneration. Circular RNAs (circRNAs) play a crucial role in regulating the osteogenic differentiation and bone remodeling of ADSCs; however, the underlying molecular mechanisms remain unclear. In this study, we conducted whole transcriptome sequencing (WTS) on ADSCs and constructed a competing endogenous RNA (ceRNA) regulatory network to identify the circTTC3/miR-205/mothers against decapentaplegic homolog 3 (Smad3) signaling axis.
View Article and Find Full Text PDF