Capacitive pressure sensors based on bioinspired structured electrode for human-machine interaction applications.

Biosens Bioelectron

Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin, 130022, China; The National Key Laboratory of Automotive Chassis Integration and Bionics (ACIB), College of Biological and Agricultural Engineering, Jilin University, Changchun, 130022, China; Institute

Published: March 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Flexible pressure sensor is a crucial component of tactile sensors and plays an integral role in numerous significant fields. Despite the considerable effort put forth, how to further improve sensitivity with ingenious yet easy-to-manufacture structures and apply them to emerging fields such as structure/materials recognition, human motion monitoring, and human-machine interaction remains a challenge. Here, we develop a highly sensitive flexible capacitive pressure sensor featuring a structured electrode layer with embedded microcracks and a dielectric layer with micro-convex structures, which are combined with an iontronic interface. The sophisticated design endows the sensor with superior perceptual performance, showing a relatively linear sensitivity of 1613 kPa in the range of 50 kPa and a detection limit of ∼6.7 Pa. Due to its excellent sensing capabilities, the sensors have been demonstrated for microstructure/material stiffness recognition and human motion monitoring. Furthermore, by integrating a single sensor with an inertial unit, the sensor gains the capability to output multiple sets of instructions. This work provides innovative design inspiration for flexible electronics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2024.117086DOI Listing

Publication Analysis

Top Keywords

capacitive pressure
8
structured electrode
8
human-machine interaction
8
pressure sensor
8
recognition human
8
human motion
8
motion monitoring
8
sensor
5
pressure sensors
4
sensors based
4

Similar Publications

Electroactive polymer (EAP) artificial muscles are gaining attention in robotic control technologies. Among them, the development of self-sensing actuators that integrate sensing mechanisms within artificial muscles is highly anticipated. This study aimed to evaluate the accuracy and precision of the sensing capabilities of the e-Rubber (eR), an artificial muscle developed by Toyoda Gosei Co.

View Article and Find Full Text PDF

Precise control of particle size, pore size distribution, and carbon layer spacing under green and low-energy conditions is critical for developing advanced carbon electrodes for supercapacitors and sodium-ion batteries (SIBs). Herein, we proposed a new strategy to prepare an MgAl bimetallic metal-organic framework (MOF) via a pre-ionization strategy, effectively avoiding harsh conditions and using organic solvents in hydrothermal synthesis. By fine-tuning the Mg/Al ratio and pyrolysis conditions, the particle size, pore size distribution and carbon layer spacing of rod porous carbon (RPC) were precisely adjusted.

View Article and Find Full Text PDF

The growing prevalence of exercise-induced tibial stress fractures demands wearable sensors capable of monitoring dynamic musculoskeletal loads with medical-grade precision. While flexible pressure-sensing insoles show clinical potential, their development has been hindered by the intrinsic trade-off between high sensitivity and full-range linearity (R > 0.99 up to 1 MPa) in conventional designs.

View Article and Find Full Text PDF

Contact-dominated localized electric-displacement-field-enhanced pressure sensing.

Nat Commun

August 2025

Key Laboratory for the Physics and Chemistry of Nanodevices and School of Electronics, Peking University, Beijing, China.

Pressure sensors, especially the typical capacitive sensors that feature low power consumption, have drawn considerable interest in emerging and rapidly growing fields such as flexible electronics and humanoid robots, but often suffer from limited performance. Here, we report a contact-dominated design for capacitive pressure sensors to dramatically improve the sensing response and linearity over a broad pressure range. This design is implemented by utilizing hierarchical microstructured electrodes made of robust conductive composites with metallic coverage and layered dielectrics with high unit-area capacitance to realize localized electric-displacement-field-enhanced capacitance change.

View Article and Find Full Text PDF

This paper examines how water temperature affects the dynamics of a single cavitation bubble in free field conditions. Both experimental and theoretical approaches are employed to explore the bubble dynamics in water under different temperatures. A series of single bubble experiments are conducted in water using the capacitive discharge method, with water temperature ranging from room temperature to near boiling point under atmospheric pressure.

View Article and Find Full Text PDF