In this study, a facile and mask-free femtosecond laser direct writing (FLDW) approach is proposed to fabricate porous graphene (FLIG) patterns directly on polyimide (PI) substrates. By systematically adjusting the laser scanning spacing (10-25 μm), denser and more continuous microstructures are obtained, resulting in significantly enhanced thermal sensitivity. The optimized sensor demonstrated a temperature coefficient of 0.
View Article and Find Full Text PDFMaterials (Basel)
August 2025
Flexible sensors have emerged as essential components in next-generation technologies such as wearable electronics, smart healthcare, soft robotics, and human-machine interfaces, owing to their outstanding mechanical flexibility and multifunctional sensing capabilities. Despite significant advancements, challenges such as the trade-off between sensitivity and detection range, and poor signal stability under cyclic deformation remain unresolved. To overcome the aforementioned limitations, this work introduces a high-performance soft sensor featuring a dual-layered electrode system, comprising silver nanoparticles (AgNPs) and a composite of multi-walled carbon nanotubes (MWCNTs) with carbon black (CB), coupled with a laser-engraved crack-gradient microstructure.
View Article and Find Full Text PDFFemtosecond laser micromachining, a remarkable technology for fabricating various micro/nanostructures, struggles to balance processing efficiency and quality. Here, a method is proposed that combines femtosecond laser optical field modulation technology with the wet chemical etching process to efficiently fabricate high-quality microhole arrays on zinc sulfide (ZnS). Utilizing Bessel beams and subpulse sequences for fabrication, a machining error of less than 0.
View Article and Find Full Text PDFBiomimetics (Basel)
April 2025
The heel pad, located under the calcaneus of the human foot, is a hidden treasure that has been subjected to harsh mechanical conditions such as impact, vibration, and cyclic loading. This has resulted in a unique compartment structure and material composition, endowed with advanced biomechanical functions including cushioning, vibration reduction, fatigue resistance, and touchdown stability, making it an ideal natural bionic prototype in the field of bionic materials. It has been shown that the highly specialized structure and material composition of the heel pad endows it with biomechanical properties such as hyperelasticity, viscoelasticity, and mechanical anisotropy.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Vibration sensors are integral to a multitude of engineering applications, yet the development of low-cost, easily assembled devices remains a formidable challenge. This study presents a highly sensitive flexible vibration sensor, based on the piezoresistive effect, tailored for the detection of high-dynamic-range vibrations and accelerations. The sensor's design incorporates a polylactic acid (PLA) housing with cavities and spherical recesses, a polydimethylsiloxane (PDMS) membrane, and electrodes that are positioned above.
View Article and Find Full Text PDFBiosens Bioelectron
March 2025
Flexible pressure sensor is a crucial component of tactile sensors and plays an integral role in numerous significant fields. Despite the considerable effort put forth, how to further improve sensitivity with ingenious yet easy-to-manufacture structures and apply them to emerging fields such as structure/materials recognition, human motion monitoring, and human-machine interaction remains a challenge. Here, we develop a highly sensitive flexible capacitive pressure sensor featuring a structured electrode layer with embedded microcracks and a dielectric layer with micro-convex structures, which are combined with an iontronic interface.
View Article and Find Full Text PDFPolymers (Basel)
September 2024
Vibration sensors are widely applied in the detection of faults and analysis of operational states in engineering machinery and equipment. However, commercial vibration sensors with a feature of high hardness hinder their usage in some practical applications where the measured objects have irregular surfaces that are difficult to install. Moreover, as the operating environments of machinery become increasingly complex, there is a growing demand for sensors capable of working in wet and humid conditions.
View Article and Find Full Text PDFVibration sensors are widely used in many fields like industry, agriculture, military, medicine, environment, etc. However, due to the speedy upgrading, most sensors composed of rigid or even toxic materials cause pollution to the environment and give rise to an increased amount of electronic waste. To meet the requirement of green electronics, biodegradable materials are advocated to be used to develop vibration sensors.
View Article and Find Full Text PDFObjective: Many methods of acetabular reconstruction with total hip arthroplasty (THA) for Crowe type II and III adult developmental dysplasia of the hip (DDH) acetabular bone defect have been implemented clinically. However, there was no study comparing the results of integrated acetabular prosthesis (IAP) with bone grafting (BG). This study aims to investigate the efficacy of IAP and BG for acetabular reconstruction in Crowe type II and III DDH.
View Article and Find Full Text PDFACS Nano
January 2024
ACS Appl Mater Interfaces
June 2023
Due to the extreme complexity of the anti-reflective subwavelength structure (ASS) parameters and the drastic limitation of Gaussian beam manufacturing accuracy, it remains a great challenge to manufacture ASS with ultrahigh transmittance on the surface of infrared window materials (such as magnesium fluoride (MgF)) directly by femtosecond laser. Here, a design, manufacturing, and characterization method that can produce an ultrahigh-performance infrared window by femtosecond laser Bessel beam is proposed. Inspired by the excellent anti-reflective and hydrophobic properties of the special structure of dragonfly wings, a similar structural pattern with grid-distributed truncated cones is designed and optimized for its corresponding parameters to achieve near-full transmittance.
View Article and Find Full Text PDFFlexible pressure sensors have provided an attractive option for potential applications in wearable fields like human motion monitoring or human-machine interfaces. For the development of flexible pressure sensors, achieving high performance or multifunctions are popular research tendencies in recent years, such as improving their sensitivity, working range, or stability. Sponge materials with porous structures have been demonstrated that they are one of the potential substrates for developing novel and excellent flexible pressure sensors.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2022
Flexible strain sensors have received extensive attention due to their broad application prospects. However, a majority of present flexible strain sensors may fail to maintain normal sensing performances upon external loads because of their low strength and thus their performances are affected drastically with increasing loads, which severely restricts large-area popularization and application. Scorpions with hypersensitive vibration slit sensilla are coincident with a similar predicament.
View Article and Find Full Text PDFACS Appl Mater Interfaces
June 2022
Slit sensillum, a unique sensing organ on the scorpion's legs, is composed of several cracks with curved shapes. In fact, it is just its particular morphological distribution and structure that endows the scorpions with ultrasensitive sensing capacity. Here, a scorpion-inspired flexible strain sensor with an ordered concentric circular curved crack array (CCA) was designed and fabricated by using an optimized solvent-induced and template transfer combined method.
View Article and Find Full Text PDFACS Appl Mater Interfaces
April 2022
For advanced flexible strain sensors, it is not difficult to achieve high sensitivity only. However, integrating high sensitivity, high stability, and high durability into one sensor still remains a great challenge. Fortunately, natural creatures with diversified excellent performances have given us a lot of ready-made solutions.
View Article and Find Full Text PDFSensors are widely used in various fields, among which flexible strain sensors that can sense minuscule mechanical signals and are easy to adapt to many irregular surfaces are attractive for structure health monitoring, early detection, and failure prevention in humans, machines, or buildings. In practical applications, subtle and abnormal vibrations generated from any direction are highly desired to detect and even orientate their directions initially to eliminate potential hazards. However, it is challenging for flexible strain sensors to achieve hypersensitivity and omnidirectionality simultaneously due to the restrictions of many materials with anisotropic mechanical/electrical properties and some micro/nanostructures they employed.
View Article and Find Full Text PDFFlexible strain sensors have an irreplaceable role in critical and emerging fields, such as electronic skins, flexible robots, and prosthetics. Although numerous efforts have been made to improve sensor sensitivity to meet specific application scenarios, the signal-to-noise ratio (SNR) is an extremely critical and non-negligible indicator, which takes into account higher sensitivity, meaning that they can also detect the noise signals with high sensitivity. Coincidentally, scorpions with ultrasensitive vibration sensilla also face such a dilemma.
View Article and Find Full Text PDFACS Appl Mater Interfaces
May 2021
Natural creatures can always provide perfect strategies for excellent antireflection (AR), which is valuable for photovoltaic industry, optical devices, and flexible displays. However, limited by precision, it is still difficult to guarantee the consistency between the artificial structures and the original biological structures. Here, a novel large-scale flexible AR film is inspired by the cicada wings and successfully fabricated with a recycled template.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2021
There is currently a growing demand for flexible strain sensors with high performance and water repellency for various applications such as human motion monitoring, sweat or humidity detection, and certain underwater tests. Among these strain sensors, paper-based ones have attracted increasing attention because they coincide with the future development trend of environment-friendly electronic products. However, paper-based electronics are easy to fail when they encounter water and are thus unable to be applied to humid or underwater circumstances.
View Article and Find Full Text PDFA general and efficient method for copper-catalyzed transfer hydrogenation of isoquinolines with an oxazaborolidine-BH complex, under mild reaction conditions, is successfully developed. A broad range of isoquinolines has been reduced to the corresponding products with 61-85% yields. The method is applied to the synthesis of biologically active tetrahydrosioquinoline alkaloid (±)-norlaudanosine in 62% yield, which is the key precursor for the preparation of (±)-laudanosine, (±)--methyl-laudanosine, and (±)-xylopinine in one or two steps.
View Article and Find Full Text PDFAn iridium-catalyzed selenium-directed -C-H borylation of benzyl selenide derivatives was successfully developed. This is the first example where selenium is used as a directing group in C-H borylation. The reaction was carried out using the tricyclohexylphosphine ligand for an improved catalytic efficiency.
View Article and Find Full Text PDFSince its invention invented in China, paper has been widely used in the world for quite a long time. However, some intrinsic defects servely hinder its application in some extreme conditions, such as underwater or in fire. Herein, a bio-inspired durable paper with robust fluorine-free coatings was fabricated via a two-step spray-deposition technique.
View Article and Find Full Text PDFRecently, there has been tremendous interest in flexible pressure sensors to meet the technological demands of modern society. For practical applications, pressure sensors with high sensitivity at small strains and low detection limits are highly desired. In this paper, inspired by the slit sensillum of the scorpion, a flexible pressure sensor is presented which has regular microcrack arrays and its reversed pattern acts as a tunable contact area of the sensing material microstructures.
View Article and Find Full Text PDFBiomimetic sensor technology is always superior to existing human technologies. The scorpion, especially the forest scorpion, has a unique ability to detect subtle vibrations, which is attributed to the microcrack-shaped slit sensillum on its legs. Here, the biological sensing mechanism of the typical scorpion (Heterometrus petersii) was intensively studied in order to newly design and significantly improve the flexible strain sensors.
View Article and Find Full Text PDF