Structure-Based QSAR Modeling of RET Kinase Inhibitors from 49 Different 5,6-Fused Bicyclic Heteroaromatic Cores to Patent-Driven Validation.

ACS Omega

College of Pharmacy, Gachon University, Medical Campus, Pharmacy, Hambakmoero 191, Yeonsu-gu, Incheon City 21936, Republic of Korea.

Published: December 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

RET receptor tyrosine kinase is crucial for nerve and tissue development but can be an important oncogenic driver. This study focuses on exploring the design principles of potent RET inhibitors through molecular docking and 3D-QSAR modeling of 5,6-fused bicyclic heteroaromatic derivatives. First of all, RET inhibitors of 49 different bicyclic substructures were collected from five different data sources and selected through molecular docking simulations. QSAR models were built from the 3399 conformers of 952 RET inhibitors using the partial least-squares method and statistically evaluated. The optimal QSAR model exhibited high predictive performance, with (of training data) and (of test data) values of 0.801 and 0.794, respectively, effectively predicting known inhibitors. The optimal model was doubly verified by patent-filed RET inhibitors as the out-of-set data to demonstrate acceptable residual analysis results. Moreover, feature importance analysis of the QSAR model outlined the impact of substituent characteristics on the inhibitory activity within the 5,6-fused bicyclic heteroaromatic core structures. Furthermore, the relationship between structure and inhibitory activity was successfully applied to the RET screening of known clinical and nonclinical kinase inhibitors to afford accurate off-target prediction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11656239PMC
http://dx.doi.org/10.1021/acsomega.4c07843DOI Listing

Publication Analysis

Top Keywords

ret inhibitors
16
56-fused bicyclic
12
bicyclic heteroaromatic
12
kinase inhibitors
8
molecular docking
8
qsar model
8
inhibitory activity
8
ret
7
inhibitors
7
structure-based qsar
4

Similar Publications

Discovery of APS03118, a Potent and Selective Next-Generation RET Inhibitor with a Novel Kinase Hinge Scaffold.

J Med Chem

September 2025

Applied Pharmaceutical Science, Inc., Building 10-1, No.2, Jingyuan North Street, BDA, Beijing 100176, China.

This study reports the discovery and preclinical activity of APS03118, a novel selective RET inhibitor featuring a novel tricyclic pyrazolo[3',4':3,4]pyrazolo[1,5-]pyridine hinge-binding scaffold designed to overcome acquired resistance to first-generation selective RET inhibitors (SRIs). By enhancing hydrogen bonding with conserved hinge residues (Glu805, Ala807), APS03118 potently inhibits wild-type RET and diverse resistance mutations, including solvent-front (G810R/S/C), gatekeeper (V804M/L/E), roof (L730I/M), and hinge (Y806C/N/H) variants. In preclinical models, APS03118 induced complete tumor regression in KIF5B-RET and CCDC6-RET V804 M patient-derived xenografts (PDXs) and significantly prolonged survival in an intracranial CCDC6-RET metastasis model.

View Article and Find Full Text PDF

Overcoming resistance in RET-altered cancers through rational inhibitor design and combination therapies.

Bioorg Chem

September 2025

Department of Pharmacy, Personalized Drug Research and Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China. Electronic address:

RET tyrosine kinase, a key regulator of cellular signaling, is abnormally activated due to mutations or fusions in various cancers, making it an important therapeutic target. Traditional multi-kinase inhibitors (MKIs, such as cabozantinib and vandetanib) exhibit significant side effects due to non-selective inhibition of targets like VEGFR, and also suffer from resistance associated with RET mutations (e.g.

View Article and Find Full Text PDF

A review: recent developments of co-targeted TRK (tropomyosin receptor kinases) inhibitors for cancer therapy.

Bioorg Chem

September 2025

Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran. Electronic address:

Multi-targeted agents can sequentially act on two or more targets, leading to synergistic and more effective therapeutic effects against several complicated disorders, containing cancer, even with relatively modest action. The TRKs (tropomyosin receptor kinases) are confirmed as promising targets in anti-tumor drug discovery. Over the past 20 years, many small molecules TRK inhibitors have been identified, that some of them are being investigated in various clinical phases.

View Article and Find Full Text PDF

Although a diagnosis of anaplastic thyroid carcinoma (ATC) can be rendered on fine needle aspiration (FNA), a core needle biopsy is often performed to provide sufficient material for immunohistochemical and molecular analysis. Rendering an ATC diagnosis on core biopsy can be challenging due to limited material. It is crucial that other diagnostic entities in the differential, such as poorly differentiated thyroid carcinoma, medullary thyroid carcinoma, lymphoma, metastases, and NUT carcinoma (among others), are considered and that immunohistochemistry (IHC) is employed judiciously to support the diagnosis.

View Article and Find Full Text PDF

Personalized therapy in metastatic colorectal cancer: biomarker-driven use of biologics.

Expert Opin Biol Ther

September 2025

Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy.

Introduction: Metastatic colorectal cancer (mCRC) remains a leading cause of cancer mortality worldwide, with limited long-term survival despite therapeutic advances. The increasing understanding of its molecular heterogeneity has paved the way for precision medicine approaches aiming to optimize treatment efficacy and reduce unnecessary toxicity.

Areas Covered: This review provides an in-depth analysis of the current and emerging molecular targets in mCRC, including RAS, BRAF, HER2, and microsatellite instability.

View Article and Find Full Text PDF