Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Age-related macular degeneration (AMD), is a neurodegenerative ocular disease. This study investigated the role of ferroptosis-related genes and their interaction with immune cell infiltration in AMD.

Methods: We screened differential expression genes (DEGs) of AMD from data sets in Gene Expression Omnibus. We identified ferroptosis-related differentially expressed genes (ferroDEGs) by intersecting DEGs with ferroptosis-related genes. Protein-protein interactions network and Cytoscape were used for screening hub genes. Next, we analyzed immune cell infiltration using CIBERSORT and examined the crosstalk between hub ferroDEGs and immune cell infiltration. Hub genes expression in each cell cluster and the proportions of different cell clusters between AMD and normal samples were examined using single-cell data. The hub ferroDEG expressions were verified in cell and mouse models using RT-qPCR, western blot, and immunofluorescence assay. The roles of ANXA1 in ferroptosis and its crosstalk with microglia were investigated.

Results: We identified hub ferroDEGs that include six genes (ANXA1, DKK1, CD44, VIM, TGFB2, DUSP1). Functional analysis of those hub ferroDEGs was found to be correlated with leukocyte migration and chemotaxis, macrophage migration, and gliogenesis. The high-risk ferroptosis group exhibited elevated levels of CD8 T cells, activated NK cells, and M2 macrophages. Single-cell sequencing data revealed a high degree of cell heterogeneity in macular degeneration and the monocytes proportion in the macular area was higher in AMD samples. Moreover, we observed elevated mRNA and protein levels of CD44, ANXA1 (P < 0.01), while ANXA1 knockdown reduced GPX4 expression in the cell model. Finally, we validated increased ANXA1 expression and observed its colocalization with microglia in mouse models using immunofluorescence assays.

Conclusions: This study offers insights into the AMD pathogenesis and identifies ANXA1 as a potential target related to protecting from ferroptosis and immune response for future research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11665202PMC
http://dx.doi.org/10.1186/s40001-024-02163-1DOI Listing

Publication Analysis

Top Keywords

immune cell
16
cell infiltration
16
macular degeneration
12
hub ferrodegs
12
cell
8
age-related macular
8
ferroptosis-related genes
8
hub genes
8
genes
7
hub
6

Similar Publications

Caseinolytic protease P (ClpP) is a highly conserved serine protease that plays a pivotal role in protein homeostasis and quality control in bacteria, mitochondria of mammalian cells, and plant chloroplasts. As the proteolytic core of the ATP-dependent Clp protease complex, ClpP partners with regulatory ATPases (e.g.

View Article and Find Full Text PDF

Role of Splenocytes on T Cells and Its Cytokine Network in Rheumatoid Arthritis.

Crit Rev Immunol

January 2025

Department of Biochemistry, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala, India 695581.

Rheumatoid arthritis (RA) is a chronic autoimmune condition that impacts the immune system, especially through changes in the splenic immune cell system. This review provides an overview of the role of splenocytes in T cell signaling and their immune response in RA patients. The spleen acts as a critical site for the activation and differentiation of splenic immune cells like T cells, B cells, macrophages, dendritic cells, and NK cells.

View Article and Find Full Text PDF

IL-2 agonists significantly modulate T cell regulation, impacting activation, proliferation, differentiation, and immune homeostasis. Interleukin-2 (IL-2) is crucial for T cell growth and function, binding to the IL-2 receptor to trigger signaling pathways that balance immune responses. IL-2 promotes the expansion of effector T cells and enhances regulatory T cells (Tregs), preventing autoimmune responses.

View Article and Find Full Text PDF

Immunomodulatory Roles of Tonsil-Derived Mesenchymal Stem Cells.

Crit Rev Immunol

January 2025

State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China.

Stemming from human immune organs, tonsil-derived mesenchymal stem cells (TMSCs) hold unique strengths in differentiation potential and immune regulatory functions. These characteristics make them valuable for therapeutic applications, particularly in regenerative medicine and autoimmune disease treatment, as they can modulate immune responses and promote tissue repair. Their ability to interact with various cell types and secrete a range of bioactive molecules further enhances their role in orchestrating healing processes, making them a promising avenue for innovative therapies aimed at restoring balance in the immune system and facilitating recovery from injury or disease.

View Article and Find Full Text PDF

Nanomedicine-Mediated Therapies to Target Cancer Stem Cells: An Emerging Technology.

Crit Rev Ther Drug Carrier Syst

January 2025

Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.

Cancer stem cells (CSCs) are a category of cancer cells endowed with the ability to renew themselves, undergo unregulated growth, and exhibit a differentiation capacity akin to that of normal stem cells. CSCs have been linked with tumor metastasis and cancer recurrence due to their ability to elude immune monitoring. As a result, targeting CSCs specifically may improve the efficacy of cancer therapy.

View Article and Find Full Text PDF