98%
921
2 minutes
20
In recent years, there has been a notable increase in the concentration of air pollutants in the troposphere, especially ozone. However, limited research has gone beyond examining histopathological alterations in the olfactory bulb (OB) to explore the effects of ozone exposure on olfactory and cognitive functions. In our study, we exposed nine-month-old C57BL/6 mice to ozone at a concentration of 1.0 ppm for 13 weeks to examine the effects of ozone on the OB. The results indicated that ozone exposure induces olfactory and cognitive impairments in the mice. Subsequently, microglia in the OB are activated, leading to neuroinflammation. Ozone-induced downregulation of PSD95 and Synaptophysin, which was accompanied by a decrease in dendritic length and spine density. Simultaneously, increasing in the co-labeling of C1q, Iba1, and PSD95 after ozone exposure indicated that C1q-mediated synaptic phagocytosis by microglia might play a role in synaptic damage. Furthermore, the co-labeling of GSDMD-N and NEUN results suggests that ozone exposure triggers pyroptosis in neurons. Additionally, minocycline administration can alleviate ozone-induced olfactory and cognitive impairments by suppressing microglial activation. This study illustrates that prolonged ozone exposure leads to microglial activation in the OB, causing synaptic damage, neuronal pyroptosis, and subsequent deficits in olfactory and cognitive functions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2024.136901 | DOI Listing |
J Integr Neurosci
August 2025
Complex Operative Unit (UOC) Otolaryngology-Head and Neck Surgery, Ospedale San Camillo de Lellis, Azienda Sanitaria Locale (ASL) Rieti-Sapienza University, 02100 Rieti, Italy.
Nasal cytology is evolving into a promising tool for diagnosing neurological and psychiatric disorders, especially those such as Alzheimer's and Parkinson's diseases. Moreover, recent research has indicated that biomarkers differ greatly between samples taken before and after death. Nasal cytology might help to identify the early stages of cognitive decline.
View Article and Find Full Text PDFMov Disord Clin Pract
September 2025
Department of Neurology, Danish Dementia Research Centre, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark.
Background: Early identification of pathological α-synuclein deposition (αSynD) may improve understanding of Lewy body disorder (LBD) progression and enable timely disease-modifying treatments.
Objectives: We investigated αSynD using a seed amplification assay and assessed prodromal LBD symptoms in individuals with idiopathic olfactory dysfunction (iOD).
Methods: In this cross-sectional, case-control study, we included iOD participants and normosmic healthy controls (HC) aged 55 to 75 years without diagnoses of dementia with Lewy bodies, Parkinson's disease (PD), or other major neurological disorders.
Chem Senses
September 2025
Institute of Psychology, University of Wroclaw, Wroclaw, Poland.
Olfactory training (OT), a structured exposure to odors, is commonly used by otorhinolaryngologists to treat olfactory dysfunction. However, OT has been shown to improve cognition of people with cognitive or olfactory impairments and slow the age-related cognitive decline. This study investigated whether OT could enhance cognitive functions in older adults with an intact sense of smell, compared to younger adults.
View Article and Find Full Text PDFDiabetes Obes Metab
September 2025
Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
Aims: Type 2 diabetes (T2D) related cognitive impairment links to comorbid and modifiable olfactory dysfunction; however, the efficacy of olfactory training (OT) to mitigate cognitive decline specifically in these patients with mild cognitive impairment (MCI) remains unestablished. This study aimed to determine whether OT alleviates cognitive decline in this population.
Materials And Methods: In this 16-week, open-label trial, 60 T2D participants with MCI were randomly assigned (1:1) to OT or routine care (control).
CNS Neurosci Ther
September 2025
Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun, Republic of Korea.
Objectives: Hepatic encephalopathy (HE) is a neuropsychiatric disorder associated with cirrhosis and chronic liver disease primarily driven by ammonia (NH3) toxicity, which leads to neuroinflammation and cognitive deficits. Recent studies have identified olfactory dysfunction as a potential early indicator of HE, linked to ammonia-induced neurotoxicity in the brain.
Methods: After confirming physiological alterations in olfactory cells induced by ammonia, we assessed gene expression changes in olfactory bulbs of bile duct ligation (BDL) mice as an HE mouse model.