Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Introduction: Benralizumab, a monoclonal IgG antibody, has emerged as a key therapeutic agent in severe asthma by specifically targeting eosinophils, pivotal cells that drive inflammation and tissue damage. Over the past two decades, the availability of such targeted therapies has allowed patients to achieve better disease control. Real-world evidence has consistently demonstrated the effectiveness of benralizumab in managing severe asthma.

Areas Covered: This paper discusses the kinetic and potential mechanism of action of benralizumab beyond the well-known antibody-dependent cell-mediated cytotoxicity involving natural killer cells.

Expert Opinion: The available data so far clearly show that reducing eosinophils, one of the main drivers of inflammation and tissue damage in SA, accounts for clinical benefits to these patients. Benralizumab is able to directly reduce tissue levels of eosinophils via multiple mechanisms, and additionally, it is potentially able to modulate the innate immune response. The complex and unique multiple modes of action of benralizumab and its pharmacokinetic features, seem to be the milestone on which the effectiveness of benralizumab is founded.

Download full-text PDF

Source
http://dx.doi.org/10.1080/14712598.2024.2446600DOI Listing

Publication Analysis

Top Keywords

inflammation tissue
8
tissue damage
8
effectiveness benralizumab
8
action benralizumab
8
benralizumab
7
benralizumab tissue
4
tissue distribution
4
distribution eosinophilic
4
eosinophilic cytotoxicity
4
cytotoxicity potential
4

Similar Publications

Proper alignment between donor and recipient cartilage in osteochondral allograft transplantation supports tissue integration and the formation of a stable articulating surface. This study evaluated the use of patient-specific 3D-printed drill guides to improve alignment in an ovine model of osteochondral allograft transplantation when used in place of a free-hand drilling technique. Fourteen female Arcott sheep underwent bilateral osteochondral allograft transplantation.

View Article and Find Full Text PDF

Lipid Metabolism and Immune Crosstalk in Fish Gut-Liver Axis: Insights from SOCS8 Knockout and Dietary Stress Models.

Fish Shellfish Immunol

September 2025

State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, State Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture and Rural Affairs, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; College of Advanced Agricultural Sciences, Universi

Metaflammation, a chronic immune response triggered by metabolic dysregulation, poses significant threats to gut-liver homeostasis in aquaculture species. To understand the progression of metaflammation, it is crucial to examine the role of SOCS8 deficiency in socs8 zebrafish, as this species may serve as a disease model for metabolic disorders due to the gradual dysregulation of immunity, metabolism, and the gut microbiota observed in them. This study examines the immune-metabolic crosstalk in grass carp, subjected to soybean meal-induced enteritis, and in socs8 zebrafish under genetic and dietary stress.

View Article and Find Full Text PDF

This study investigated the effects of Yttrium-90 (Y90) radioembolization in 8 rabbits, focusing on delivery accuracy, dosimetry, and pathological outcomes. Y90 was successfully delivered angiographically targeted via the pulmonary lower basal segmental arteries to all rabbits, with confirmation via PET/CT imaging and a lung target median of the mean dose 132.1Gy (range, 11.

View Article and Find Full Text PDF

Hepatotoxicity induced by polylactic acid microplastics: The mediating role of gut microbiota and uric acid metabolism.

J Adv Res

September 2025

National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, China. Electronic address: huangzhenlie85825

Introduction: The increasing use of biodegradable plastics has led to the inevitable human consumption of biodegradable microplastics (MPs). These MPs can be degraded and absorbed into various organs and tissues via the gastrointestinal tract, with the liver being the primary target for digestion and absorption.

Objectives: This study aimed to investigate the toxic effects and mechanisms of biodegradable MPs on the liver following gastrointestinal degradation.

View Article and Find Full Text PDF

Silicosis is a fatal occupational lung disease characterized by persistent inflammation and irreversible fibrosis. However, the pathogenesis of silicosis is currently unclear. In this study, a mouse model of silicosis was established by intranasal instillation of silica, and transcriptomic alterations in lung tissues were assessed by mRNA-sequencing.

View Article and Find Full Text PDF