Proper alignment between donor and recipient cartilage in osteochondral allograft transplantation supports tissue integration and the formation of a stable articulating surface. This study evaluated the use of patient-specific 3D-printed drill guides to improve alignment in an ovine model of osteochondral allograft transplantation when used in place of a free-hand drilling technique. Fourteen female Arcott sheep underwent bilateral osteochondral allograft transplantation.
View Article and Find Full Text PDFGα, the stimulatory G protein α-subunit that raises intracellular cAMP levels by activating adenylyl cyclase, plays a vital role in bone development, maintenance, and remodeling. Previously, using transgenic mice overexpressing Gα in osteoblasts (G-Tg), we demonstrated the influence of osteoblast Gα level on osteogenesis, bone turnover, and skeletal responses to hyperparathyroidism. To further investigate whether alterations in Gα levels affect endochondral bone repair, a postnatal bone regenerative process that recapitulates embryonic bone development, we performed stabilized tibial osteotomy in male G-Tg mice at 8 weeks of age and examined the progression of fracture healing by micro-CT, histomorphometry, and gene expression analysis over a 4-week period.
View Article and Find Full Text PDFBackground: β-Arrestin 2 (β-arr2) binds activated parathyroid hormone (PTH) receptors stimulating internalization. PTH stimulates both anabolic and catabolic effect on bone depending on the way it is administered. Intermittent PTH stimulation increases trabecular bone formation in mice, but this is decreased in mice lacking β-arr 2, suggesting a role for β-arr 2 in the anabolic effects of PTH.
View Article and Find Full Text PDFGS, the stimulatory heterotrimeric G protein, is an essential regulator of osteogenesis and bone turnover. To determine if increasing GαS in osteoblasts alters bone responses to hyperparathyroidism, we used a transgenic mouse line overexpressing GαS in osteoblasts (GS-Tg mice). Primary osteoblasts from GS-Tg mice showed increased basal and parathyroid hormone (PTH)-stimulated cAMP and greater responses to PTH than cells from WT mice.
View Article and Find Full Text PDFTwo commercially available porous coatings, Gription and Porocoat, were compared for the first time in a challenging intra-articular, weight-bearing, ovine model. Gription has evolved from Porocoat and has higher porosity, coefficient of friction, and microtextured topography, which are expected to enhance bone ingrowth. Cylindrical implants were press-fit into the weight-bearing regions of ovine femoral condyles and bone ingrowth and fixation strength evaluated 4, 8, and 16 weeks postoperatively.
View Article and Find Full Text PDFSci Transl Med
September 2020
Although most children survive B cell acute lymphoblastic leukemia (B-ALL), they frequently experience long-term, treatment-related health problems, including osteopenia and osteonecrosis. Because some children present with fractures at ALL diagnosis, we considered the possibility that leukemic B cells contribute directly to bone pathology. To identify potential mechanisms of B-ALL-driven bone destruction, we examined the ; ; triple mutant (TM) mice and ; double mutant (DM) mouse models of spontaneous B-ALL.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
August 2020
Bone grafting procedures are commonly used to manage bone defects in the craniofacial region. Monetite is an excellent biomaterial option for bone grafting, however, it is limited by lack of osteoinduction. Several molecules can be incorporated within the monetite matrix to promote bone regeneration.
View Article and Find Full Text PDFBackground: Deproteinized bovine bone mineral (DBBM) has been extensively studied and used for bone regeneration in oral and maxillofacial surgery. However, it lacks an osteoinductive ability. We developed two novel bone anabolic conjugated drugs, known as C3 and C6, of an inactive bisphosphonate and a bone activating synthetic prostaglandin agonist.
View Article and Find Full Text PDFPathological bone loss is a regular feature of postmenopausal osteoporosis, and the microstructural changes along with the bone loss make the individual prone to getting hip, spine, and wrist fractures. We have developed a new conjugate drug named C3, which has a synthetic, stable EP4 agonist (EP4a) covalently linked to an inactive alendronate (ALN) that binds to bone and allows physiological remodeling. After losing bone for 12 weeks, seven groups of rats were treated for 8 weeks via tail-vein injection.
View Article and Find Full Text PDFThe absence of functional dystrophin with mutations of the dystrophin-encoding gene in Duchenne muscular dystrophy (DMD) results in muscle inflammation and degeneration, as well as bone fragility. Long-term glucocorticoid therapy delays the muscular disease progression but suppresses growth hormone secretion, resulting in short stature and further deleterious effects on bone strength. This study evaluated the therapeutic potential of daily growth hormone therapy in growing mdx mice as a model of DMD.
View Article and Find Full Text PDFBackground: The pathophysiology of genetic hypercalciuric stone-forming rats parallels that of human idiopathic hypercalciuria. In this model, all animals form calcium phosphate stones. We previously found that chlorthalidone, but not potassium citrate, decreased stone formation in these rats.
View Article and Find Full Text PDFPurpose: Achieving successful and predictable alveolar ridge augmentation in the vertical dimension is extremely challenging. Several materials have been investigated to achieve vertical ridge augmentation; however, the results are highly unpredictable. The collaborative team presenting this research has developed brushite- and monetite-based grafts that incorporate in their matrix a novel bone anabolic conjugate (C3) of a bisphosphonate and a potent bone-activating EP4 receptor agonist.
View Article and Find Full Text PDFAm J Phys Anthropol
February 2019
Objectives: Novel information on apartheid health conditions may be obtained through the study of recent skeletal collections. Using a backscattered scanning electron microscopy (BSE-SEM) approach, this study aims to produce bone quality and tissue mineralization data for an understudied South African population from the Western Cape province.
Methods: Using BSE-SEM imaging, cortical porosity (Ct.
Calcif Tissue Int
February 2019
Duchenne muscular dystrophy (DMD) is an X-linked disease of progressive muscle deterioration and weakness. Patients with DMD have poor bone health which is partly due to treatment with glucocorticoids, a standard therapy to prolong muscle function that also induces bone loss. Bisphosphonates are used to treat adults at risk of glucocorticoid-induced osteoporosis but are not currently used in DMD patients until after they sustain fractures.
View Article and Find Full Text PDFDuchenne muscular dystrophy (DMD) results from genetic mutations of the gene encoding dystrophin, leading to muscle inflammation and degeneration that is typically treated with glucocorticoids. DMD and its treatment with glucocorticoids result in poor bone health and high risk of fractures. Insufficient levels of 25-hydroxyvitamin D (25-hydroxy D) that may contribute to weakened bone are routinely found in DMD patients.
View Article and Find Full Text PDFBisphosphonates target and bind avidly to the mineral (hydroxyapatite) found in bone. This targeting ability has been exploited to design and prepare bisphosphonate conjugate prodrugs to deliver a wide variety of drug molecules selectively to bones. It is important that conjugates be stable in the blood stream and that conjugate that is not taken up by bone is eliminated rapidly.
View Article and Find Full Text PDFObjectives: The purpose of this study was to provide bone histomorphometric reference data for South Africans of the Western Cape who likely dealt with health issues under the apartheid regime.
Methods: The 206 adult individuals ( female = 75, male = 131, mean = 47.9 ± 15.
J Bone Miner Res
November 2017
Gα is a heterotrimeric G protein that transduces signals from activated G protein-coupled receptors on the cell surface to stimulate adenylyl cyclase/cyclic adenosine monophosphate (AMP) signaling. Gα plays a central role in mediating numerous growth and maintenance processes including osteogenesis and bone turnover. Decreased Gα expression or activating mutations in Gα both affect bone, suggesting that modulating Gα protein levels may be important for bone health and development.
View Article and Find Full Text PDFGlucocorticoids (GCs) have unparalleled anti-inflammatory and immunosuppressive properties, which accounts for their widespread prescription and use. Unfortunately, a limitation to GC therapy is a wide range of negative side effects including Cushing's syndrome, a disease characterized by metabolic abnormalities including muscle wasting and osteoporosis. GC-induced osteoporosis occurs in 30% to 50% of patients on GC therapy and thus, represents an important area of study.
View Article and Find Full Text PDFCleidocranial dysplasia (CCD) is an autosomal dominant human disorder characterized by abnormal bone development that is mainly due to defective intramembranous bone formation by osteoblasts. Here, we describe a mouse strain lacking the E3 ubiquitin ligase RNF146 that shows phenotypic similarities to CCD. Loss of RNF146 stabilized its substrate AXIN1, leading to impairment of WNT3a-induced β-catenin activation and reduced Fgf18 expression in osteoblasts.
View Article and Find Full Text PDFBone undergoes continuous remodeling due to balanced bone formation and resorption mediated by osteoblasts and osteoclasts, respectively. Osteoclasts arise from the macrophage lineage, and their differentiation is dependent on RANKL, a member of the TNF family of cytokines. Here, we have provided evidence that RANKL controls the expression of 3BP2, an adapter protein that is required for activation of SRC tyrosine kinase and simultaneously coordinates the attenuation of β-catenin, both of which are required to execute the osteoclast developmental program.
View Article and Find Full Text PDFCellular identity in metazoan organisms is frequently established through lineage-specifying transcription factors, which control their own expression through transcriptional positive feedback, while antagonizing the developmental networks of competing lineages. Here, we have uncovered a distinct positive feedback loop that arises from the reciprocal stabilization of the tyrosine kinase ABL and the transcriptional coactivator TAZ. Moreover, we determined that this loop is required for osteoblast differentiation and embryonic skeletal formation.
View Article and Find Full Text PDFGlucocorticoids are extensively used to treat patients with Duchenne muscular dystrophy because of their ability to delay muscle damage, prolong ambulation and extend life. However, use of glucocorticoids significantly increases bone loss, fragility and fractures. To determine if antiresorptive bisphosphonates could prevent the effects of glucocorticoids on bone quality, we used dystrophic mdx mice treated with the glucocorticoid prednisone during 8weeks of rapid bone growth from 5 to 13weeks of age and treated some mice with the bisphosphonate pamidronate during the first two weeks of prednisone administration.
View Article and Find Full Text PDFIntermittent parathyroid hormone (iPTH) treatment and mechanical loading are osteoanabolic stimuli that are partially mediated through actions on G protein-coupled receptors (GPCRs). GPCR signaling can be altered by heterotrimeric G protein Gα subunits levels, which can therefore lead to altered responses to such stimuli. Previous studies have suggested that enhanced signaling through the Gαq/11 pathway inhibits the osteoanabolic actions of PTH.
View Article and Find Full Text PDFOsteoblastic cells indirectly induce osteoclastogenesis in the bone microenvironment by expressing paracrine factors such as RANKL and M-CSF, leading to increased bone resorption. These cytokines can be regulated by a variety of intracellular pathways, which include G protein-coupled receptor signaling. To explore how enhanced signaling of the Gαq/11 pathway in osteoblast lineage cells may mediate osteoclast formation, we cocultured wild-type (WT) preosteoclasts with BMSCs derived from either WT or transgenic mice with osteoblast-specific overexpression of Gα11 (G11-Tg).
View Article and Find Full Text PDF