98%
921
2 minutes
20
Amygdala activation by emotional arousal during memory formation can prioritize events for long-term memory. Building upon our prior demonstration that brief electrical stimulation to the human amygdala reliably improved long-term recognition memory for images of neutral objects without eliciting an emotional response, our study aims to explore and describe individual differences and stimulation-related factors in amygdala-mediated memory modulation. Thirty-one patients undergoing intracranial monitoring for intractable epilepsy were shown neutral object images paired with direct amygdala stimulation during encoding with recognition memory tested immediately and one day later. Adding to our prior sample, we found an overall memory enhancement effect without subjective emotional arousal at the one-day delay, but not at the immediate delay, for previously stimulated objects compared to not stimulated objects. Importantly, we observed a larger variation in performance across this larger sample than our initial sample, including some participants who showed a memory impairment for stimulated objects. Of the explored individual differences, the factor that most accounted for variability in memory modulation was each participant's pre-operative memory performance. Worse memory performance on standardized neuropsychological tests was associated with a stronger susceptibility to memory modulation in a positive or negative direction. Sex differences and the frequency of interictal epileptiform discharges (IEDs) during testing also accounted for some variance in amygdala-mediated memory modulation. Given the potential and challenges of this memory modulation approach, we discuss additional individual and stimulation factors that we hope will differentiate between memory enhancement and impairment to further optimize the potential of amygdala-mediated memory enhancement for therapeutic interventions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12239763 | PMC |
http://dx.doi.org/10.3758/s13415-024-01250-4 | DOI Listing |
Eur J Immunol
September 2025
Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland.
Memory T cells, a sizable compartment of the mature immune system, enable enhanced responses upon re-infection with the same pathogen. We have recently shown that virus-experienced innate acting T (T) cells can modulate infectious or autoimmune diseases through TCR-independent IFN-γ production. However, how these cells arise remains unclear.
View Article and Find Full Text PDFAppl Neuropsychol Child
September 2025
Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
Objective: Attention deficit hyperactivity disorder (ADHD) is linked to time perception deficits, with theories such as Scalar Expectancy Theory (SET) and Dynamic Attending Theory (DAT) offering different explanations. SET suggests time perception relies on a pacemaker-counter system influenced by working memory, whereas DAT highlights the role of attention in modulating time perception. This study examines the impact of attention, working memory, and motor response on time perception in children with ADHD.
View Article and Find Full Text PDFMedicine (Baltimore)
September 2025
Department of Pharmacology of Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.
Gastrodin (GAS), the principal bioactive component derived from Gastrodia elata Bl., has demonstrated efficacy in attenuating methamphetamine (MA) induced conditioned place preference (CPP) in animal models. However, the molecular mechanisms underlying its anti-addictive effects, particularly the role of miRNAs, remain insufficiently understood.
View Article and Find Full Text PDFFood Res Int
November 2025
State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu, China.
Cognitive disorders, a rapidly growing public health concern, can be prevented by a healthy diet. Several studies have shown that protein intake is a key modulator of cognitive function. The development of precision nutrition has allowed the study of specific amino acids within proteins, with many studies reporting that the level of methionine (Met) intake plays a central role in modulating cognitive function.
View Article and Find Full Text PDFACS Nano
September 2025
Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan 430072, China.
Ferroelectric tunnel junctions (FTJs) based on ferroelectric switching and quantum tunneling effects with thickness down to a few unit cells have been explored for applications of two-dimensional (2D) electronic devices in data storage and neural networks. As a key performance indicator, the enhanced tunneling electrosistance (TER) ratio provides a broader dynamic range for precise modulation of synaptic weights, improving the stability and accuracy of neural networks. Herein, we report an observation of pronounced enhancement in the TER ratio by over 4 orders of magnitude through the fabrication of large-scale heterostructures combining bismuth ferrite with two-dimensional Ruddlesden-Popper oxide BiFeO.
View Article and Find Full Text PDF