Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The reliable long-distance transmission of electromagnetic wave signals within goaf is fundamental for the implementation of wireless monitoring and early warning systems for goaf-related disasters. This paper establishes an experimental platform for electromagnetic wave signal transmission within goaf and develops a propagation model for electromagnetic waves in the porous media of goaf. The transmission characteristics of electromagnetic waves at various frequencies within the porous media environment of goaf are investigated through experimental and numerical simulation approaches. The results indicate that the received signal intensity of electromagnetic waves across different frequency bands diminishes with increasing propagation distance in the lossy environment of the goaf. Initially, the decay follows a logarithmic pattern, whereas, at later stages, the attenuation exhibits a gradual and smooth decrease. As the frequency increases, the initial attenuation amplitude of electromagnetic wave intensity rises; however, subsequent attenuation is largely unaffected by frequency, with the later attenuation rate being proportional to porosity. Electromagnetic waves at a frequency of 700 MHz exhibit a low attenuation coefficient under both experimental and simulated conditions, demonstrating superior stability and reliability. This frequency significantly enhances the overall performance of the communication system and is suitable for use as the operational frequency band in wireless sensor networks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11654933PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0315888PLOS

Publication Analysis

Top Keywords

electromagnetic wave
16
electromagnetic waves
16
porous media
12
frequencies porous
8
media goaf
8
environment goaf
8
waves frequency
8
electromagnetic
7
goaf
6
frequency
6

Similar Publications

Introduction: This study explores high-impedance surface (HIS) metamaterial shields for enhancing the transmit field in whole-body MRI at 7 T. We studied the possibility of placing a metamaterial layer between the gradient coil and bore liner using electromagnetic simulations to evaluate B and SAR efficiency across different impedances.

Materials And Methods: Simulations were performed in three stages, first metamaterial design and characterization, then single-element dipole simulations with a homogenous phantom, and finally, simulations including a four-element arrays with a virtual body model, including the whole scanner geometry.

View Article and Find Full Text PDF

Ultrafast light-driven strongly correlated antiferromagnetic insulators, such as prototypical NiO with a large Mott energy gap ≃4  eV, have recently attracted experimental attention using photons of both subgap [H. Qiu et al., Nat.

View Article and Find Full Text PDF

Transcriptome analysis of shade-induced growth and photosynthetic responses in soybean cultivars.

PLoS One

September 2025

Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRl). Ministry of Agriculture and Rural Affairs/Key Laboratory of Crop Gene Resource and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs, Bei

Shade stress alters soybean growth through transcriptomic changes and adaptive responses that optimize light capture and utilization, regulated by a phytohormonal network. This study examined the physiological, morphological, and molecular responses of Guru (shade-tolerant) and Heinong 53 (shade-sensitive) soybean cultivars under 0% (control), 30%, and 70% shade. Results revealed morphological responses where Heinong 53 exhibited greater plant height (52.

View Article and Find Full Text PDF

Microfibers are pollutants of increasing concern, as they accumulate in aquatic environments and pose risks to living organisms. Once released, they undergo degradation processes that reduce their size and enhance their ability to interact with biological systems. Among these processes, photodegradation is a key driver, leading to fiber fragmentation and structural shrinkage.

View Article and Find Full Text PDF

Epiphytic orchids have evolved specialized adaptive strategies, such as aerial roots with water-absorbing velamen tissues, to cope with water-scarce and nutrient-deficient habitats. Our previous study revealed that the aerial roots of the epiphytic orchid Phalaenopsis aphrodite lack a gravitropic response, raising the possibility that alternative tropic mechanisms may contribute to their adaptation. In this study, we examined the effects of light and moisture on aerial root growth in P.

View Article and Find Full Text PDF