Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background And Aims: This study aims to develop and validate a machine learning (ML) model predicting hepatocellular carcinoma (HCC) in chronic hepatitis B (CHB) patients after the first 5 years of entecavir (ETV) or tenofovir (TFV) therapy.

Methods: CHB patients treated with ETV/TFV for > 5 years and not diagnosed with HCC during the first 5 years of therapy were selected from two hospitals. We used 36 variables, including baseline characteristics (age, sex, cirrhosis, and type of antiviral agent) and laboratory values (at baseline, at 5 years, and changes between 5 years) for model development. Five machine learning algorithms were applied to the training dataset and internally validated using a test dataset. External validation was performed.

Results: In years 5-15, a total of 279/5908 (4.7%) and 25/562 (4.5%) patients developed HCC in the derivation and external validation cohorts, respectively. In the training dataset (n = 4726), logistic regression showed the highest area under the receiver operating curve (AUC) of 0.803 and a balanced accuracy of 0.735, outperforming other ML algorithms. An ensemble model combining logistic regression and random forest performed best (AUC, 0.811 and balanced accuracy, 0.754). The results from the test dataset (n = 1182) verified the good performance of the ensemble model (AUC, 0.784 and balanced accuracy, 0.712). External validation confirmed the predictive accuracy of our ensemble model (AUC, 0.862 and balanced accuracy, 0.771). A web-based calculator was developed (http://ai-wm.khu.ac.kr/HCC/).

Conclusions: The proposed ML model excellently predicted HCC risk beyond year 5 of ETV/TFV therapy and, therefore, could facilitate individualised HCC surveillance based on risk stratification.

Download full-text PDF

Source
http://dx.doi.org/10.1111/liv.16139DOI Listing

Publication Analysis

Top Keywords

balanced accuracy
16
machine learning
12
external validation
12
ensemble model
12
learning model
8
hepatocellular carcinoma
8
chronic hepatitis
8
chb patients
8
training dataset
8
test dataset
8

Similar Publications

Objectives: To evaluate the performance of artificial intelligence (AI)-based models in predicting elevated neonatal insulin levels through fetal hepatic echotexture analysis.

Methods: This diagnostic accuracy study analyzed ultrasound images of fetal livers from pregnancies between 37 and 42 weeks, including cases with and without gestational diabetes mellitus (GDM). Images were stored in Digital Imaging and Communications in Medicine (DICOM) format, annotated by experts, and converted to segmented masks after quality checks.

View Article and Find Full Text PDF

Fetal standard plane detection is essential in prenatal care, enabling accurate assessment of fetal development and early identification of potential anomalies. Despite significant advancements in machine learning (ML) in this domain, its integration into clinical workflows remains limited-primarily due to the lack of standardized, end-to-end operational frameworks. To address this gap, we introduce FetalMLOps, the first comprehensive MLOps framework specifically designed for fetal ultrasound imaging.

View Article and Find Full Text PDF

Heartbeat detection and personal authentication using a 60 GHz Doppler sensor.

Front Digit Health

August 2025

Architecture Laboratory, Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan.

Background: Microwave Doppler sensors, capable of detecting minute physiological movements, enable the measurement of biometric information, such as walking patterns, heart rate, and respiration. Unlike fingerprint and facial recognition systems, they offer authentication without physical contact or privacy concerns. This study focuses on non-contact seismocardiography using microwave Doppler sensors and aims to apply this technology for biometric authentication.

View Article and Find Full Text PDF

The plateau pika () is a keystone species on the Qinghai-Tibet Plateau, and its population density-typically inferred from burrow counts-requires rapid, low-cost monitoring. We propose YOLO-Pika, a lightweight detector built on YOLOv8n that integrates (1) a Fusion_Block into the backbone, leveraging high-dimensional mapping and fine-grained gating to enhance feature representation with negligible computational overhead, and (2) an MS_Fusion_FPN composed of multiple MSEI modules for multi-scale frequency-domain fusion and edge enhancement. On a plateau pika burrow dataset, YOLO-Pika increases mAP50 by 3.

View Article and Find Full Text PDF

Introduction: Rice is an important food crop but is susceptible to diseases. However, currently available spot segmentation models have high computational overhead and are difficult to deploy in field environments.

Methods: To address these limitations, a lightweight rice leaf spot segmentation model (MV3L-MSDE-PGFF-CA-DeepLabv3+, MMPC-DeepLabv3+) was developed for three common rice leaf diseases: rice blast, brown spot and bacterial leaf blight.

View Article and Find Full Text PDF