98%
921
2 minutes
20
Transition metal oxides (TMOs) can effectively improve the performance of electrochemical detection due to their unique electronic structure and redox properties. However, the lack of reproducibility and the electrical activity of TMOs prepared from conventional preparation methods limit their further development. In this work, amorphous MoO with reductive Mo(V) was successfully synthesized by one-step electrodeposition, and it has excellent detection performance for p-nitrophenol (PNP). In general, the prepared amorphous mixed-valence MoO has rich reductive Mo(V), which produces valence change and accelerates electron transfer during detection. Moreover, the prepared material contains considerable oxygen vacancy, which remarkably enhances the adsorption process and redox of PNP. Through the synergistic effect of valence state transformation and oxygen vacancy, the catalytic redox of PNP is expedited. The sensitivity of the prepared MoO modified electrode to PNP was 0.5266 μA μM, and the low detection limit was 0.0196 μM. MoO also shows good anti-interference, stability and reproducibility. On this basis, we can further optimize the electrodeposition process to prepare transition metal oxides with excellent catalytic properties in the future, and promote its wide application in the field of environmental monitoring and sensing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2024.127360 | DOI Listing |
Discov Nano
September 2025
Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Integrated Circuit, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450052, China.
A cost-effective and large-scale method for synthesizing ZnCoO nanoflowers with surface oxygen vacancies as electrode materials for supercapacitors is presented. The existence of oxygen vacancies on the surface of the ZnCoO nanoflowers has been confirmed through X-ray photoelectron spectroscopy (XPS). The energy bands and density of states (DOS) of ZnCoO are examined using density functional theory, revealing that treatment with NaBH reduces the band gap of ZnCoO while increasing the DOS near the Fermi level compared to pristine ZnCoO.
View Article and Find Full Text PDFChem Commun (Camb)
September 2025
State Key Laboratory of New Textile Materials & Advanced Processing Technology, College of Materials Science and Engineering, Wuhan Textile University, Wuhan, 430200, China.
The faradaic efficiency of the electro-synthesis of ammonia using the nitrate reduction reaction (NORR) relies on an electrocatalyst to hydrogenate NO and simultaneously suppress the hydrogen evolution reaction (HER). Due to the formation of a heterostructure, the faradaic efficiency of g-CN/BiO reaches 91.12% at -0.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Kathleen Lonsdale Materials Chemistry, Department of Chemistry, University College London, London WC1H 0AJ, U.K.
The exceptional performance of ceria (CeO) in catalysis and energy conversion is fundamentally governed by its defect chemistry, particularly oxygen vacancies. The formation of each oxygen vacancy (V) is assumed to be compensated by two localized electrons on cations (Ce). Here, we show by combining theory with experiment that while this 1 V: 2Ce ratio accounts for the global charge compensation, it does not apply at the local scale, particularly in nanoparticles.
View Article and Find Full Text PDFAdv Mater
September 2025
School of Materials Science and Engineering, Anhui University, Hefei, 230601, China.
Modulating the electronic structure of catalysts to maximize their power holds the key to address the challenges faced by zinc-iodine batteries (ZIBs), including the shuttle effect and slow redox kinetics at the iodine cathode. Herein, oxygen vacancies is innovatively introduced into CoO lattice to create high-spin-state Co active sites in nonstoichiometric CoO nanocrystals supported by carbon nanofibers (H-CoO/CNFs). This simple strategy intensifies crystal field splitting of Co 3d orbitals, optimizing the spin-orbital coupling between Co 3d orbitals and iodine species.
View Article and Find Full Text PDFJ Mater Chem B
September 2025
Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China.
The effect of sonocatalysis on anticancer treatment is always restricted by rapid recombination of charge and low utilization of the ultrasonic cavitation effect. Herein, cobalt-doped prussian blue (PB) nanocubes were synthesized, and then they were etched by acidic solution to obtain amorphous Co-FePB@1h with abundant defects including: Fe/Co defects, Fe-(CN) vacancies, and dangling bonds. Both doping and defect engineering contribute to decreasing the band gap and promoting charge separation.
View Article and Find Full Text PDF