Cooperative Multiscale-Assembly for Directional and Hierarchical Growth of Highly Oriented Porous Organic Cage Single-Crystal Microtubes and Arrays.

Angew Chem Int Ed Engl

MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China.

Published: March 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The directional assembly of porous organic molecules into long-range ordered architectures, featuring controlled hierarchical porosity and oriented pore channels with defined spatial arrangements, is a fundamental challenge in chemistry and materials science. Herein, using porous organic cages as starting units, we present a cooperative multiscale-assembly strategy enabling the simultaneous alignment of pore channels and directional hierarchical growth in a single step. At the microscopic level, we employed double solvents to manipulate the intermolecular packing of microporous tetrahedral [4+6] imine cages (CC1 and CC3), resulting in pore channel orientation. Concurrently, at the mesoscopic level, convective flow in the double-solvent system directed the spatial distribution of nuclei species, followed by diffusion limited growth, leading to the directional formation of single-crystal microtubes. By precisely controlling the direction of convective flow, the nanocages were successfully organized into 2D and 3D single-crystal microtube arrays while maintaining oriented micropores. This hierarchical porous architecture enhanced mass transfer, as confirmed by adsorption measurements. Interestingly, such 3D hierarchical microtube arrays can be utilized to immobilize Pd clusters and enzymes (lipase or Glucose oxidase) within the micro- and macropores, respectively, showing a 3.8- to 4-fold enhancement in one-pot tandem reaction activity compared to physical mixtures of individual analogues.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202421523DOI Listing

Publication Analysis

Top Keywords

porous organic
12
cooperative multiscale-assembly
8
directional hierarchical
8
hierarchical growth
8
single-crystal microtubes
8
pore channels
8
convective flow
8
microtube arrays
8
hierarchical
5
directional
4

Similar Publications

In this study, a novel hybrid hydrogel incorporating a scandium-based metal-organic framework (scandium-integrated MOF-hydrogel hybrid) was developed using scandium nitrate, 1,4-naphthalenedicarboxylic acid, oxidized pectin, and chitosan. The synthesized scandium-integrated MOF-hydrogel hybrid demonstrated remarkable dual-functionality in both the adsorption of hazardous dye pollutants and the inhibition of pathogenic bacteria commonly found in wastewater. Characterization of the scandium-integrated MOF-hydrogel hybrid was performed using FT-IR, XRD, SEM, EDAX, CHNO elemental, BET, and XPS analyses, confirming successful MOF integration and a porous, reactive surface.

View Article and Find Full Text PDF

Exhaled breath analysis offers noninvasive, early lung cancer detection via volatile organic compound (VOC) biomarkers, surpassing blood-based methods. Surface-enhanced Raman spectroscopy (SERS) is ideal for this purpose, combining molecular fingerprint specificity with single-molecule sensitivity. However, conventional SERS substrates face a fundamental limitation: while porous materials such as metal-organic frameworks effectively adsorb VOCs through their subnanometer pores (0.

View Article and Find Full Text PDF

Engineering Covalent and Noncovalent Interface Synergy in MXenes for Ultralong-life and Efficient Energy Storage.

Angew Chem Int Ed Engl

September 2025

Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, P.R. China.

MXenes serve as pivotal candidates for pseudocapacitive energy storage owing to sound proton/electron-transport capability and tunable topology. However, the metastable surface terminal properties and the progressive oxidation leads to drastic capacity fading, posing significant challenges for sustainable energy applications. Here, with the aramid nanofiber as the interface mediator, we engineer the thermal reconstruction of MXenes to synergistically introduce interfacial covalent and noncovalent interactions, resulting in a high specific capacitance of 531.

View Article and Find Full Text PDF

The development of sensors for monitoring breath acetone, a key biomarker for ketosis in diabetes mellitus, represents a critical frontier in medical diagnostics, promising a painless alternative to invasive blood tests. This review provides a comprehensive and critical evaluation of the state-of-the-art in acetone gas sensing technologies, including chemiresistive, optical, electrochemical, conductometric, and microwave platforms. We focus specifically on recent breakthroughs driven by advanced materials, analyzing how novel nanostructures from two-dimensional (2D) materials such as MXenes to porous metal-organic frameworks (MOFs) are engineered to push performance to clinically relevant parts-per-billion (ppb) sensitivity.

View Article and Find Full Text PDF

Porous organic cages (POCs) have emerged as promising porous materials for a wide range of applications. However, their development is often limited by insufficient chemical stability and challenges in systematically functionalization. Herein, we reported the design and synthesis of a tetrazine-based POC (TC1) featuring rigid tetrahedral structure, prepared via a one-pot nucleophilic aromatic substitution reaction.

View Article and Find Full Text PDF