Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We investigated mRNA vaccines encoding a membrane-anchored receptor-binding domain (RBD), each a fusion of a variant RBD, the transmembrane (TM) and cytoplasmic tail fragments of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein. In naive mice, RBD-TM mRNA vaccines against SARS-CoV-2 variants induced strong humoral responses against the target RBD. Multiplex surrogate viral neutralization (sVNT) assays revealed broad neutralizing activity against a range of variant RBDs. In the setting of a heterologous boost, against the background of exposure to ancestral whole-spike vaccines, sVNT studies suggested that BA.1 and BA.5 RBD-TM vaccines had the potential to overcome the detrimental effects of immune imprinting. A subsequent heterologous boost study using XBB.1.5 booster vaccines was evaluated using both sVNT and authentic virus neutralization. Geometric mean XBB.1.5 neutralization values after third-dose RBD-TM or whole-spike XBB.1.5 booster vaccines were compared with those after a third dose of ancestral spike booster vaccine. Fold-improvement over ancestral vaccine was just 1.3 for the whole-spike XBB.1.5 vaccine, similar to data published using human serum samples. In contrast, the fold-improvement achieved by the RBD-TM XBB.1.5 vaccine was 16.3, indicating that the RBD-TM vaccine induced the production of antibodies that neutralize the XBB.1.5 variant despite previous exposure to ancestral spike protein.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11646785PMC
http://dx.doi.org/10.1016/j.omtm.2024.101380DOI Listing

Publication Analysis

Top Keywords

mrna vaccines
12
vaccines encoding
8
encoding membrane-anchored
8
strong humoral
8
humoral responses
8
immune imprinting
8
spike protein
8
heterologous boost
8
exposure ancestral
8
xbb15 booster
8

Similar Publications

Sea perch is one of the most important fish species farmed in China. However, the frequent outbreak of viral diseases induced by sea perch iridovirus (SPIV) always caused high mortality and heavy economic losses in sea perch aquaculture. Up to now, no effective countermeasures against SPIV infection have been established.

View Article and Find Full Text PDF

A Safe and Broad-spectrum SARS-CoV-2 mRNA Vaccine with a New Delivery System for In-situ Expression.

Virol Sin

September 2025

State Key Laboratory of Virology and Biosafety, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China; Institute for Vaccine Research at Animal Bio-safety Level Ⅲ Laboratory, Wuhan University, Wuhan, 430071, China.

Since the outbreak of SARS-CoV-2 in late 2019, the cumulative number of confirmed cases worldwide has surpassed 778 million, and the number of deaths has exceeded 7 million, posing a significant threat to human life and health while inflicting enormous losses on the global economy. At the stage where sequential immunization is recommended, there is a pressing demand for mRNA vaccines that can be rapidly adapted to new sequences, are easy to industrialize, and exhibit high safety and effectiveness. We developed a lipid nanoparticle (LNP) system, designated as WNP, which facilitates essentially in situ expression at the injection site and results in lower levels of pro-inflammatory factors in the liver, thus enhancing its safety compared to liver-targeted alternatives.

View Article and Find Full Text PDF

For some of the COVID-19 vaccines, the drug substances released to market were manufactured differently than those used in clinical trials. Manufacturing nucleoside-modified mRNA (modRNA) for commercial COVID-19 vaccines relies on RNA polymerase transcription of a plasmid DNA template. Previous studies identified high levels of plasmid DNA in vials of modRNA vaccines, suggesting that the removal of residual DNA template is problematic.

View Article and Find Full Text PDF

Chitosan polyplexes for targeted gene delivery: From mechanisms to clinical applications.

Carbohydr Polym

November 2025

Department of Pharmaceutics, Parul Institute of Pharmacy, Faculty of Pharmacy, Parul University, Waghodia, Vadodara, 391760, Gujarat, India; Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India; Faculty of Pharmacy, Silpakorn Univers

As a diverse natural polymer called Chitosan, it created ground-breaking advancements in nucleic acid therapeutic delivery techniques for handling essential DNA and RNA delivery hurdles. The article investigates how nucleic acids form stable polyplexes with chitosan through electrostatic bonds, as well as explores their chemical and biological properties. The review explores how molecular weight, combined with the degree of deacetylation, combined with advanced functionalization strategies, help enhance delivery results.

View Article and Find Full Text PDF

Background: Canine parvovirus (CPV) poses a severe threat to canine health, necessitating the development of safer and more effective vaccines. While traditional vaccines carry risks of virulence reversion and environmental contamination, subunit vaccines-especially neutralizing epitope vaccines-offer promising alternatives by eliciting targeted immune responses with enhanced safety.

Methods: We employed bacterial display technology to express 11 overlapping CPV VP2 gene fragments on the periplasmic membrane of E.

View Article and Find Full Text PDF