Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Biotin (vitamin B) is a crucial cofactor for various metabolic processes and has significant applications in pharmaceuticals, cosmetics, and animal feed. , a well-studied Gram-positive bacterium, presents a promising host for biotin production due to its Generally Recognized as Safe (GRAS) status, robust genetic tractability, and capacity for metabolite secretion. This study focuses on the metabolic engineering of . to enhance biotin biosynthesis. Initially, the desthiobiotin (DTB) and biotin synthesis ability of different . strains were evaluated to screen for suitable chassis cells. Subsequently, the titers of DTB and biotin were increased to 21.6 mg/L and 2.7 mg/L, respectively, by relieving the feedback repression of biotin synthesis and deleting the biotin uptake protein YhfU. Finally, through engineering the access tunnel to the active site of biotin synthase (BioB) for reactants and modulating its expression, the biotin titer was increased to 11.2 mg/L, marking an 1130-fold improvement compared to the wild-type strain. These findings provide novel strategies for enhancing the production of DTB and improving the conversion efficiency of DTB to biotin.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11648629PMC
http://dx.doi.org/10.1016/j.synbio.2024.11.005DOI Listing

Publication Analysis

Top Keywords

dtb biotin
12
biotin
11
biotin synthesis
8
pathway protein
4
protein channel
4
channel engineering
4
engineering improved
4
improved production
4
production desthiobiotin
4
desthiobiotin biotin
4

Similar Publications

A bacterial methyltransferase that initiates biotin synthesis, an attractive anti-ESKAPE druggable pathway.

Sci Adv

December 2024

Key Laboratory of Multiple Organ Failure (Ministry of Education), and Departments of Microbiology and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.

The covalently attached cofactor biotin plays pivotal roles in central metabolism. The top-priority ESKAPE-type pathogens, and , constitute a public health challenge of global concern. Despite the fact that the late step of biotin synthesis is a validated anti-ESKAPE drug target, the primary stage remains fragmentarily understood.

View Article and Find Full Text PDF

Biotin (vitamin B) is a crucial cofactor for various metabolic processes and has significant applications in pharmaceuticals, cosmetics, and animal feed. , a well-studied Gram-positive bacterium, presents a promising host for biotin production due to its Generally Recognized as Safe (GRAS) status, robust genetic tractability, and capacity for metabolite secretion. This study focuses on the metabolic engineering of .

View Article and Find Full Text PDF

ADP-ribosylation is a post-translational modification catalyzed by the enzyme family of polyadenosine diphosphate (ADP)-ribose) polymerases (PARPs). This enzymatic process involves the transfer of single or multiple ADP-ribose molecules onto proteins, utilizing nicotinamide adenine dinucleotide (NAD ) as a substrate. It, thus, plays a pivotal role in regulating various biological processes.

View Article and Find Full Text PDF

A dual-labeled fluorescent probe for visualization of dextranase activity in a simulated food digestion system.

Food Chem

March 2023

Life Quality Engineering Interest Group, School of Chemical and Environmental Engineering, Soochow University, Suzhou Industrial Park Campus, Jiangsu Province 215123, China. Electronic address:

Molecular bioimaging of enzyme activity is rapidly emerging as a powerful strategy for accurate disease diagnostics. This work aims to prove that bioimaging of enzyme activity in food digestion with a fluorescent probe is feasible. In this study, a dual-labeled fluorescent probe with dextran-tetramethylrhodamine (TMR)-biotin conjugate (DTB) as the enzyme-cleavable unit, and biotin-(5-fluorescein) conjugate (FB) as the reference unit, was developed.

View Article and Find Full Text PDF

Biotin, thiamine, and lipoic acid are industrially important molecules naturally synthesized by microorganisms via biosynthetic pathways requiring iron-sulfur (FeS) clusters. Current production is exclusively by chemistry because pathway complexity hinders development of fermentation processes. For biotin, the main bottleneck is biotin synthase, BioB, a S-adenosyl methionine-dependent radical enzyme that converts dethiobiotin (DTB) to biotin.

View Article and Find Full Text PDF