A dual-labeled fluorescent probe for visualization of dextranase activity in a simulated food digestion system.

Food Chem

Life Quality Engineering Interest Group, School of Chemical and Environmental Engineering, Soochow University, Suzhou Industrial Park Campus, Jiangsu Province 215123, China. Electronic address:

Published: March 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Molecular bioimaging of enzyme activity is rapidly emerging as a powerful strategy for accurate disease diagnostics. This work aims to prove that bioimaging of enzyme activity in food digestion with a fluorescent probe is feasible. In this study, a dual-labeled fluorescent probe with dextran-tetramethylrhodamine (TMR)-biotin conjugate (DTB) as the enzyme-cleavable unit, and biotin-(5-fluorescein) conjugate (FB) as the reference unit, was developed. It was immobilized in the agarose gel (the model food matrix) for the fluorescence quantification of dextranase activity. The probe manifested significantly ratiometric fluorescent signals (I/I) in response to the enzyme-active reaction. Linear relationships of I/I were obtained against the dextranase concentration ratio (C/C). I/I increased more rapidly with a greater dextranase diffusion rate, also supported by the more significant diffusion coefficient of fluorescently labeled dextranase in 0.5 wt% agarose gel (1.87 × 10 cm s). Our work provides more mechanistic evidence for enzyme activity imaging in food digestion.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2022.134744DOI Listing

Publication Analysis

Top Keywords

fluorescent probe
12
food digestion
12
enzyme activity
12
dual-labeled fluorescent
8
dextranase activity
8
bioimaging enzyme
8
agarose gel
8
dextranase
5
activity
5
probe
4

Similar Publications

The antibiotic contamination in aquatic environments, particularly in aquaculture systems, poses substantial risks to ecological balance and human health. To address this issue, we engineered a novel ratiometric fluorescent probe utilizing dual-emission carbon dots (D-CDs) synthesized from sustainable biomass carrot and nitrogen-rich precursors (melamine and o-phenylenediamine) through an efficient one-pot hydrothermal approach. The D-CDs exhibited dual emission peaks at 425nm and 540 nm under 370nm excitation.

View Article and Find Full Text PDF

Carbon quantum dot-aptamer/MoS nanosheet fluorescent sensor for ultrasensitive, noninvasive cortisol detection.

Anal Bioanal Chem

September 2025

Hebei Key Laboratory of Public Health Safety, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Public Health, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, China.

This work presents the development of a highly sensitive, selective, and efficient aptamer-based fluorescent sensor for detecting cortisol in human urine. Carbon quantum dots-nucleic acid aptamer (CQDs-Apt) synthesized with excellent photoluminescent properties and stability, were selected as the fluorescent probe. In the presence of MoS-NSs, CQDs-Apt adsorbed onto the surface of MoS-NSs via electrostatic and π-π interactions, leading to strong and rapid fluorescence quenching due to static quenching mechanism between them.

View Article and Find Full Text PDF

Molecules that exhibit excited-state intramolecular proton transfer (ESIPT) have demonstrated great promise in fluorescent probes. The electronic effect of substituents has an important influence on the ESIPT process. In this study, we investigated the effects of substituents on the ESIPT mechanism and the photophysical behavior of single-benzene fluorophore (SBF) derivatives with computational chemistry methods.

View Article and Find Full Text PDF

Cyclization Enhances Luminescence Efficiency of a Fluorescent Probe for Amyloid-β in Alzheimer's Disease.

Chemistry

September 2025

International School for Optoelectronic Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.

Alzheimer's disease (AD) is a neurodegenerative disease characterized by β-amyloid (Aβ) deposition, imposing significant social and economic burdens globally. Despite extensive efforts have been devoted to developing fluorescent probes for Aβ imaging, further improving the luminescent efficiency of prevailing probes still remains a significant challenge. Herein, we investigated the inner mechanism of constructing high-efficient Aβ probes via a structural cyclization strategy.

View Article and Find Full Text PDF

Recent Progress in Peptide-Based Fluorescent Probes Biomedical Applications: A Review.

Int J Nanomedicine

September 2025

Department of Orthopedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China.

Peptide-based fluorescent probes have found widespread applications in biomedical research, including bio-imaging, disease diagnosis, drug discovery, and image-guided surgery. Their favorable properties-such as small molecular size, low toxicity, minimal immunogenicity, and high targeting specificity-have contributed to their growing utility in both basic research and translational medicine. This review provides a comprehensive overview of recent advances in peptide-based fluorescent probes, emphasizing design strategies, biological targets, and diverse functional applications.

View Article and Find Full Text PDF