Computational Study on the Proton Reduction Potential of Co, Rh, and Ir Molecular Electrocatalysts for the Hydrogen Evolution Reaction.

ACS Omega

MolMod-CS-Instituto de Química, Universidade Federal Fluminense, Campos de Valonginho s/n, Centro, Niterói, Rio de Janeiro 24020-14, Brazil.

Published: December 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In this study, comprehensive density functional theory calculations were conducted to investigate the molecular mechanism of electrocatalytic proton reduction using group 9 transition metal bpaqH (2-(bis(pyridin-2-ylmethyl)amino)--(quinolin-8-yl)acetamide) complexes. The goal was to explore how variations in the structural and electronic properties among the three metal centers might impact the catalytic activity. All three metal complexes were observed to share a similar mechanism, primarily characterized by three key steps: heterolytic cleavage of H (HEP), reduction protonation (RPP), and ligand-centered protonation (LCP). Among these steps, the heterolytic cleavage of H (HEP) displayed the highest activation barrier for cobalt, rhodium, and iridium catalysts compared to those of the RPP and LCP pathways. In the RPP pathway, hydrogen evolution occurred from the M-H intermediate using acetic acid as a proton donor at the open site. Conversely, in the LCP pathway, H-H bond formation took place between the hydride and the protonated bpaqH ligand, while the open site acted as the spectator. The enhanced activity of the cobalt complex stemmed from its robust σ-bond donation and higher hydride donor ability within the metal hydride species. Additionally, the cobalt complex demonstrated a necessary negative potential in the first (M) and second (M) reduction steps in both pathways. Notably, M-H exhibited a more crucial negative potential for the cobalt complex compared to those of the other two metal complexes. Through an examination of kinetics and thermodynamics in the RPP and LCP processes, it was established that cobalt and rhodium catalysts outperformed the iridium ligand scaffold in producing molecular hydrogen after substituting cobalt metal with rhodium and iridium centers. These findings distinctly highlight the lower-energy activation barrier associated with LCP compared to alternative pathways. Moreover, they offer insights into the potential energy landscape governing hydrogen evolution reactions involving group 9 transition metal-based molecular electrocatalysts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11635521PMC
http://dx.doi.org/10.1021/acsomega.4c03260DOI Listing

Publication Analysis

Top Keywords

hydrogen evolution
12
cobalt complex
12
proton reduction
8
molecular electrocatalysts
8
group transition
8
three metal
8
metal complexes
8
steps heterolytic
8
heterolytic cleavage
8
cleavage hep
8

Similar Publications

Design of Z-scheme WSSe-XS (X = Zr and Hf) heterostructures as photocatalysts for efficient solar water splitting.

Phys Chem Chem Phys

September 2025

Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, China.

Transition metal dichalcogenides (TMDs) have been extensively studied as efficient photocatalysts for water splitting. However, the utilization efficiency of photogenerated carriers remains a major limitation for their practical applications. An effective approach to address this issue is the construction of Z-scheme heterostructures.

View Article and Find Full Text PDF

Activating the Oxygen Evolution Performance of NiCuFe by Phosphorus Doping.

Langmuir

September 2025

College of Materials Science and Engineering, North University of China, Taiyuan 030051, PR China.

The oxygen evolution reaction (OER), a critical yet kinetically sluggish process in electrochemical water splitting, severely limits efficient hydrogen production. Herein, a simple one-step dynamic hydrogen bubble templated electrodeposition technique is used to prepare a self-supported 3D porous NiCuFeP catalyst with outstanding OER performance. In 1.

View Article and Find Full Text PDF

We herein construct the Ce-O-Ti interface bridge in the CeO/N-TiCT heterojunction through an ultrasonic-assisted hydrothermal route as an efficient Pt-free hydrogen evolution electrocatalyst. The synergistic contribution of the heterogeneous Ce-O-Ti bridge and oxygen vacancies boosts the water dissociation and thus drastically reduces energy barriers of the hydrogen evolution reaction (HER). The optimal CeO/N-TiCT material requires only a small overpotential (51.

View Article and Find Full Text PDF

Artificial nacre based on polydopamine functionalized graphene oxide nanosheets constrained palladium nanocluster with enhanced mechanical properties and catalytical functionalities.

Int J Biol Macromol

September 2025

Research Center of Advanced Catalytic Materials & Functional Molecular Synthesis, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, School of Chemistry & Chemical Engineering, Shaoxing University, Shaoxing, 312000, China; Institute of Chemistry, Chinese Academy of Scien

Inspired by "the composition of catechol and amine groups in the adhesive proteins" of marine mussel and "brick-and-mortar" structure of nacre, we use polydopamine (PDA) as "mortar", graphene oxides (GO) nanosheets as "brick", and Pd ions as interfacial reinforcer, to fabricate nacre-like Pd enhanced PDA functionalized GO membranes (Pd@PDA/GO) with vacuum filtration-assisted assembly method. Meanwhile, in situ reduced Pd nanoclusters by PDA chains were well constrained within the resultant Pd@PDA/GO artificial nacre composites. Good interfacial adhesion with dense packing of the GO nanosheets was further confirmed with sub-nano level microstructure characterization by positron annihilation lifetime spectroscopy.

View Article and Find Full Text PDF

Advancing impactful, economical, and durable Co-based bifunctional electrocatalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) has been crucial in developing sustainable energy technologies. In this work, Co and CoN nanoparticles (NPs)-incorporated S, N-doped carbon catalysts (Co/CoN/SNC) were prepared via direct pyrolysis of the CoDATT complex, exhibiting high bifunctional electrocatalytic performance for ORR and OER. The complex precursor, CoDATT, was synthesized for the first time using diaminoterthiophene (DATT) and CoCl.

View Article and Find Full Text PDF