98%
921
2 minutes
20
The oxygen evolution reaction (OER), a critical yet kinetically sluggish process in electrochemical water splitting, severely limits efficient hydrogen production. Herein, a simple one-step dynamic hydrogen bubble templated electrodeposition technique is used to prepare a self-supported 3D porous NiCuFeP catalyst with outstanding OER performance. In 1.0 M KOH solution, the optimized catalyst demonstrates a low overpotential of 236 mV at a current density of 10 mA cm, a small Tafel slope value of 48.2 mV dec, and significant stability over a period of 100 h at a current density of 50 mA cm. The reaction mechanism for the oxygen evolution reaction (OER) is elucidated further through density functional theory (DFT) calculations, providing atomic-level insights that explain the enhanced catalytic performance. In addition to developing a high-performance 3D porous OER electrocatalyst, this work suggests a general design approach for effective OER catalysts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.5c02648 | DOI Listing |
Langmuir
September 2025
College of Materials Science and Engineering, North University of China, Taiyuan 030051, PR China.
The oxygen evolution reaction (OER), a critical yet kinetically sluggish process in electrochemical water splitting, severely limits efficient hydrogen production. Herein, a simple one-step dynamic hydrogen bubble templated electrodeposition technique is used to prepare a self-supported 3D porous NiCuFeP catalyst with outstanding OER performance. In 1.
View Article and Find Full Text PDFMicrobes Environ
September 2025
Sustainable Process Engineering Center, Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya.
Nitrifying communities in activated sludge play a crucial role in biological nitrogen removal processes in municipal wastewater treatment plants. While extensive research has been conducted in temperate regions, limited information is available on nitrifiers in tropical regions. The present study investigated all currently known nitrifying communities in two full-scale municipal wastewater treatment plants in Malaysia operated under low-dissolved oxygen (DO) (0.
View Article and Find Full Text PDFJ Phys Chem Lett
September 2025
Ho Chi Minh City University of Natural Resources and Environment (HCMUNRE), Ho Chi Minh City 70000, Viet Nam.
We herein construct the Ce-O-Ti interface bridge in the CeO/N-TiCT heterojunction through an ultrasonic-assisted hydrothermal route as an efficient Pt-free hydrogen evolution electrocatalyst. The synergistic contribution of the heterogeneous Ce-O-Ti bridge and oxygen vacancies boosts the water dissociation and thus drastically reduces energy barriers of the hydrogen evolution reaction (HER). The optimal CeO/N-TiCT material requires only a small overpotential (51.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2025
Strategic Research Center for Smart Battery, Korea Basic Science Institute (KBSI), Daejeon 34133, Republic of Korea. Electronic address:
Advancing impactful, economical, and durable Co-based bifunctional electrocatalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) has been crucial in developing sustainable energy technologies. In this work, Co and CoN nanoparticles (NPs)-incorporated S, N-doped carbon catalysts (Co/CoN/SNC) were prepared via direct pyrolysis of the CoDATT complex, exhibiting high bifunctional electrocatalytic performance for ORR and OER. The complex precursor, CoDATT, was synthesized for the first time using diaminoterthiophene (DATT) and CoCl.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2025
Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, 123 University Road, Section 3, Douliou, Yunlin 64002, Taiwan.
Urea electrolysis holds tremendous promise to remediate urea-containing wastewater and produce cost-effective hydrogen. Achieving highly efficient and durable electrocatalysts to drive the anodic urea oxidation reaction (UOR) is paramount to promote its practical applications. Herein, electroless deposition, a scalable, cost-effective, and energy-saving approach, is used to obtain amorphous Ni-Co-P nanoparticles.
View Article and Find Full Text PDF