98%
921
2 minutes
20
In high-altitude regions, elevated mercury (Hg) levels in wastewater treatment plants (WWTPs) influent raise concerns about treatment efficiency and environmental impact. This study investigated the Hg biosorption capacity of activated sludge under high-altitude conditions, focusing on the binding mechanisms between EPS and Hg, and variations in EPS secretion. Low pressure, oxygen, and temperature at high altitudes increase EPS secretion, enhancing Hg biosorption. EPS provides numerous binding sites for Hg, forming nonfluorescent complexes with tryptophan-like and aromatic proteins, while hydrocarbon and oxygen-containing groups limit Hg entry into microbial cells. Proteomic analysis revealed the upregulation of transporters, stress-resistance, and binding proteins, along with those involved in carbon and amino acid metabolism, which enhance microbial resilience and EPS production, leading to increased Hg biosorption. These insights reveal adaptive mechanisms that optimize pollutant removal in high-altitude environments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envres.2024.120613 | DOI Listing |
Microbiol Spectr
September 2025
Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China.
Unlabelled: Microalgae treatment is regarded as a green and environmentally acceptable method of treating pig farm biogas slurry (BS). Numerous studies have been conducted on the use of microalgae to treat sterilized BS. Nevertheless, in large-scale application settings, this method will undoubtedly result in high costs and low efficiency.
View Article and Find Full Text PDFEnviron Res
September 2025
School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei, 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei, 430074, China. Electronic address: ho
The activation of peroxymonosulfate (PMS) by biochar has shown promising potential for the efficient degradation and detoxification of antibiotics in wastewater. However, the underlying mechanisms are not fully understood. In this study, Fenton-conditioned sludge-derived biochar (FSBC) was prepared by microwave pyrolysis to activate PMS for the efficient degradation and detoxification of sulfamethoxazole (SMX).
View Article and Find Full Text PDFACS Infect Dis
September 2025
Animal-Derived Food Safety Innovation Team, College of Veterinary Medicine, Anhui Agricultural University, Hefei 230036, China.
The emergence of multidrug-resistant (MDR) poses a significant threat to global public health, necessitating alternative therapeutic strategies. In this study, we isolated and characterized a novel lytic bacteriophage (phage), vB_EcoM_51, from poultry farm sewage and evaluated its potential against MDR . Transmission electron microscopy revealed that the phage exhibits morphological features typical of the family, including a polyhedral head (∼66.
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2025
Faculty of Engineering, University of Technology Sydney, P.O. Box 123, Broadway, Sydney, NSW, 2007, Australia.
Microalgae-bacteria symbiosis system is significant for sustainable and low-carbon wastewater treatment, with self-aggregation being key to its stable operation and effective pollutant removal. Cellular motility is the main driving force behind self-aggregation, crucial for symbiosis stability, but the characteristics and patterns involved still remain largely unexplored. Here, cellular movement dynamics into the microalgae-activated sludge model (ASM3) is incorporated, enabling synchronized simulation of metabolic activities and movement behaviors through physical and biochemical interactions in bioreactor systems.
View Article and Find Full Text PDFJ Hazard Mater
August 2025
State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of Environment, Nanjing University, Nanjing 210023, China. Electronic address:
Micropollutants are widespread in wastewater systems and can impact microbial communities and the transfer of antibiotic resistance genes (ARGs). Nevertheless, the specific concentration thresholds for these effects under environmental conditions remain largely unknown. This study evaluated six micropollutants at five environmentally relevant concentrations (0.
View Article and Find Full Text PDF