98%
921
2 minutes
20
Given the great importance of natural biopreservatives in the modern food industry, lactic acid bacteria (LAB)-producing bacteriocins have gained considerable attention due to their antimicrobial activity against foodborne pathogens and spoilage bacteria. Although numerous LAB-producing bacteriocins have demonstrated efficiency in preserving food quality in various applications, only a limited number of these compounds have been commercially approved to date. The currently unclear gastrointestinal metabolism of bacteriocins may pose safety risks, as well as cytotoxicity and immunogenicity, which need to be seriously considered before their application. A more noteworthy concern lies in whether bacteriocins induce an imbalance in the gut microbiota, thereby leading to alterations in the abundance of health-associated microorganisms and their metabolites in the gastrointestinal tract. Accordingly, this review presents unique insights into the challenges arising from metabolic interactions between LAB-producing bacteriocins and the gastrointestinal tract. Besides, the application of bacteriocins in the food industry faces challenges arising from the low production yield, weak stability, and insufficient antimicrobial activity. The corresponding development strategies are proposed for conducting the systematic and comprehensive evaluation of the potential safety risks of bacteriocins and their metabolites. The strategies also focus on the rational design to increase the activity and stability, the fermentation control to enhance the production yield, and the hurdle and embedding technology to improve the application effects. It definitively discloses the perspective of bacteriocins to become natural, sustainable, safe, and eco-friendly biological preservatives for the advancement of the food industry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1541-4337.70038 | DOI Listing |
J Sci Food Agric
September 2025
Department of Nutrition and Dietetics, Hamidiye Faculty of Health Sciences, University of Health Sciences, Istanbul, Türkiye.
Background: This study aimed to develop gluten-free bread from chickpea flour by incorporation of varying levels (0 (B-C), 2.5 (B-1), 5 (B-2), and 10 g kg (B-3)) of madımak leaf powder (MLP), and to investigate its effect on physicochemical and bioactive properties, glycemic index, texture, and sensory attributes.
Results: Moisture ranged from 229 (B-3) to 244 g kg (control), while ash content increased with MLP, reaching 47 g kg in B-3 compared to 15.
Alzheimers Dement
September 2025
Department of Population Health Sciences, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA.
Introduction: We compared and measured alignment between the Health Level Seven (HL7) Fast Healthcare Interoperability Resources (FHIR) standard used by electronic health records (EHRs), the Clinical Data Interchange Standards Consortium (CDISC) standards used by industry, and the Uniform Data Set (UDS) used by the Alzheimer's Disease Research Centers (ADRCs).
Methods: The ADRC UDS, consisting of 5959 data elements across eleven packets, was mapped to FHIR and CDISC standards by two independent mappers, with discrepancies adjudicated by experts.
Results: Forty-five percent of the 5959 UDS data elements mapped to the FHIR standard, indicating possible electronic obtainment from EHRs.
J Sci Food Agric
September 2025
College of Food Science & Technology, Shanghai Ocean University, Shanghai, China.
Background: Kaempferol (KAE), a bioactive flavonoid, has limited solubility and stability in water. Zein-gum arabic (GA) nanoparticles (NPs) are promising carriers for KAE, but the influence of preparation methods on their structure and properties remains unclear. This study investigated the effect of preparation method on the structure and properties of KAE-loaded zein-GA NPs.
View Article and Find Full Text PDFJ Sci Food Agric
September 2025
Microbial Biotechnology Research Group, School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung, Indonesia.
Background: Secondary fermentation can reduce variability in cocoa bean quality caused by the spontaneous, uncontrolled nature of primary fermentation. However, its optimization remains unexplored. This study evaluated the improvement of secondary fermentation through the combined use of Citrus limon peel and inoculation with Candida tropicalis H1Y4-1 as a starter.
View Article and Find Full Text PDFFood Chem X
August 2025
College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China.
This study utilized integrated sensory-guided, machine learning, and bioinformatics strategies identify umami-enhancing peptides from , investigated their mechanism of umami enhancement, and confirmed their umami-enhancing properties through sensory evaluations and electronic tongue. Three umami-enhancing peptides (APDGLPTGQ, SDDGFQ, and GLGDDL) demonstrated synergistic/additive effects by significantly enhancing umami intensity and duration in monosodium glutamate (MSG). Furthermore, molecular docking showed that these umami-enhancing peptides enhanced both the binding affinity and interaction forces between MSG and the T1R1/T1R3 receptor system, thereby enhancing umami perception.
View Article and Find Full Text PDF