98%
921
2 minutes
20
Background: Interactions between mesenchymal glioblastoma stem cells (MES GSCs) and myeloid-derived macrophages (MDMs) shape the tumor-immunosuppressive microenvironment (TIME), promoting the progression of glioblastoma (GBM). N6-methyladenosine (m6A) plays important roles in the tumor progression. However, the mechanism of m6A in shaping the TIME of GBM remains elusive.
Methods: Single-cell RNA sequencing and bulk RNA-seq datasets were employed to identify the critical role of WTAP in interactions between MES GBM and MDMs. The biological function of WTAP was confirmed both in vitro and in vivo. Mechanistically, mass spectrum, RNA immunoprecipitation (RIP), and co-immunoprecipitation assays were conducted.
Results: Here, we identified that m6A methyltransferase Wilms' tumor 1-associated protein (WTAP), whose protein stability could be synergistically enhanced via OGT-mediated O-GlcNAcylation and USP7-mediated de-ubiquitination, promoted LOXL2 m6A modification to enhance its mRNA stabilization in an IGF2BP2-dependent manner, upregulating secretion of LOXL2 protein (sLOXL2). sLOXL2 then interacted with integrin α5β1 on GSCs to activate FAK-ERK signaling, inducing mesenchymal transition of GSCs in an autocrine manner. Meanwhile, sLOXL2 also activated the integrin α5β1-FAK-ERK axis in MDMs, which promoted M2-like MDM phenotypes in a paracrine pathway, thereby contributing to T-cell exhaustion to induce GBM immune escape. In translational medicine, combinations of the OGT inhibitor by targeting WTAP expression and the LOXL2 antagonist by disrupting MES GSC and MDM interactions showed favorable outcomes to the anti-PD1 immunotherapy.
Conclusions: WTAP plays critical roles in mesenchymal transition of GSCs and formation of TIME, highlighting the therapeutic potential of targeting WTAP and its downstream effectors to enhance the efficacy of immunotherapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12083224 | PMC |
http://dx.doi.org/10.1093/neuonc/noae268 | DOI Listing |
Int J Surg
September 2025
BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.
Thyroid cancer, a prevalent endocrine malignancy, is influenced by its tumor microenvironment (TME), with cancer-associated fibroblasts (CAFs) playing a pivotal role in disease progression. Molecularly, CAFs orchestrate a pro-tumorigenic niche via cytokine secretion and extracellular matrix (ECM) stiffening, underscoring their targetability. Therapeutic strategies, including small molecule inhibitor-based therapies, immune-based therapies, nanoparticle-based approaches, and combination regimens, have been evaluated for their efficacy in disrupting CAF functionality.
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2025
China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Immune Response and Immunotherapy, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Resea
TP53 mutations are highly associated with hepatocellular carcinoma (HCC), a common and deadly cancer. However, few primary drivers in the progression of HCC with mutant TP53 have been identified. To uncover tumor suppressors in human HCC, a genome-wide CRISPR/Cas9-based screening of primary human hepatocytes with MYC and TP53 overexpression (MT-PHHs) is performed in xenografts.
View Article and Find Full Text PDFJ Biochem Mol Toxicol
September 2025
Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, 410011, PR China.
Gastric cancer (GC) is the third leading cause of cancer mortality globally, often presenting with insidious symptoms that lead to late-stage diagnoses, underscoring the critical need for innovative diagnostic and therapeutic strategies. One such avenue is the exploration of ferroptosis, a regulated form of cell death implicated in various pathological conditions and malignancies. In this study, we demonstrate that brucine, an alkaloid derived from Strychnos nux-vomica, exerts significant antitumor effects on GC cells both in vitro and in vivo.
View Article and Find Full Text PDFFront Mol Neurosci
August 2025
Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Lemole Center for Integrated Lymphatics and Vascular Research, Temple University, Philadelphia, PA, United States.
Introduction: Endothelial-to-mesenchymal transition (EndoMT), cell death, and fibrosis are increasingly recognized as contributing factors to Alzheimer's disease (AD) pathology, but the underlying transcriptomic mechanisms remain poorly defined. This study aims to elucidate transcriptomic changes associated with EndoMT, diverse cell death pathways, and fibrosis in AD using the 3xTg-AD mouse model.
Methods: Using RNA-seq data and knowledge-based transcriptomic analysis on brain tissues from the 3xTg-AD mouse model of AD.
Rep Pract Oncol Radiother
August 2025
Department of Biosciences, Manipal University Jaipur, Dehmi Kalan, Jaipur, Rajasthan, India.
Long non-coding ribonucleic acids (lncRNAs) form a subclass of non-coding RNAs (ncRNAs), they are quite long and as their name non-coding suggests they do not have a role in protein coding. lncRNAs are vital in all the key steps of tumorigenesis, such as epithelial-mesenchymal transition, cancer stem cells formation, invasion, migration, and formation of the tumor vasculature. lncRNAs are classified into oncogenic or anti-tumor lncRNAs based on their functions.
View Article and Find Full Text PDF