98%
921
2 minutes
20
Density functional theory (DFT) has been a cornerstone in computational chemistry, physics, and materials science for decades, benefiting from advancements in computational power and theoretical methods. This paper introduces a novel, cloud-native application, Accelerated DFT, which offers an order of magnitude acceleration in DFT simulations. By integrating state-of-the-art cloud infrastructure and redesigning algorithms for graphic processing units (GPUs), Accelerated DFT achieves high-speed calculations without sacrificing accuracy. It provides a user-friendly and scalable solution for the increasing demands of DFT calculations in scientific communities. The implementation details, examples, and benchmark results illustrate how Accelerated DFT can significantly expedite scientific discovery across various domains.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11673099 | PMC |
http://dx.doi.org/10.1021/acs.jctc.4c00940 | DOI Listing |
J Phys Chem Lett
September 2025
Center for Science at Extreme Conditions (CSEC) and the School of Physics and Astronomy, The University of Edinburgh, EH9 3JZ Edinburgh, United Kingdom.
Through high-pressure diamond anvil cell experiments, we report the synthesis of two novel potassium superhydrides (KH-I and KH-II) and investigate their structural and vibrational properties via synchrotron X-ray powder diffraction and Raman spectroscopy, complemented by density functional theory (DFT) calculations. Above 17 GPa at room temperature, KH-II and H react to form KH-I; this reaction can be accelerated with temperature. KH-I possesses a face-centered-cubic () potassium sublattice with a slight rhombohedral distortion (space group 3̅).
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2025
School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China; Zhejiang Sci-Tech University Shengzhou Innovation Research Institute, Shengzhou 312400, PR China. Electronic address:
Suppressing photoinduced charge recombination represents a critical challenge in photocatalytic ammonia (NH) decomposition for hydrogen (H) production. Herein, we propose a dual-cocatalyst system comprising plasmonic silver (Ag) and nickel oxide (NiO), which synergistically construct an Ag → titanium dioxide (TiO) → NiO directional electron cascade on TiO surfaces through work-function-induced interfacial charge transfer. The optimized 3 %Ag-1 %NiO-TiO reaches a significantly photocatalytic H production rate of 2366.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Department of Agricultural and Biosystems Engineering, South Dakota State University, Brookings, South Dakota 57007, United States.
Metal-organic frameworks (MOFs)/polymer composite electrolytes have garnered worldwide attention because of their outstanding performance in energy-related applications. Here, a highly lithiated MOF (LZM) is designed as a filler into poly(ethylene oxide) (PEO). LZM is synthesized through a postsynthetic modified strategy to obtain preeminent single-ion conducting performance.
View Article and Find Full Text PDFInorg Chem
September 2025
Department of Chemistry and Center for Metalloenzyme Studies, The University of Georgia, 302 East Campus Road, Athens, Georgia 30602, United States.
[NiFe]-hydrogenase enzymes process H at a nonplanar tetracysteinato-Ni site, the sole participator in proton binding/redox chemistry during turnover. With the objective of assessing whether a simple tetrahedral/tetrathiolato-Ni core could promote H evolution reaction (HER), we synthesized (EtN)[Ni(S--CF-Ph)] () employing -trifluoromethylbenzenethiolate (S--CF-Ph) as a Ni-site analog of [NiFe]-hydrogenase. Spectroscopic measurements and X-ray crystallography confirm the distorted tetrahedral geometry of .
View Article and Find Full Text PDFSmall
September 2025
Power Battery and System Research Center, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
Developing cost-effective, stable hydrogen evolution reaction (HER) electrocatalysts effective across pH-Universal remains challenging. This work reports a one-pot synthesized Pt-Fe-Ni-Mo-Co high-entropy alloy catalyst supported on Ketjen Black (HEA@KB) featuring stacked nanoparticles. By systematically tuning the iron coordination, the optimized HEA@KB demonstrates outstanding HER activity with low overpotentials of 12.
View Article and Find Full Text PDF