Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Lithium-rich manganese-based oxide (LRMO) materials hold great potential for high-energy-density lithium-ion batteries (LIBs) but suffer from severe voltage decay and capacity fading. Herein, we report the construction of LiF-rich solid electrolyte interphase on LRMO through a straightforward ball-milling and electrochemical approach, which exhibits remarkable structural stability and enhanced electrochemical performance.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4cc04956jDOI Listing

Publication Analysis

Top Keywords

electrolyte interphase
8
lithium-rich manganese-based
8
manganese-based oxide
8
constructing lif-rich
4
lif-rich cathode
4
cathode electrolyte
4
interphase enhance
4
enhance cyclic
4
cyclic stability
4
stability lithium-rich
4

Similar Publications

Single-Molecule Dual-Anchor Design Enables Extreme-Condition Lithium Metal Batteries Through Solvation Reconstruction and Cathode Polymerization.

Angew Chem Int Ed Engl

September 2025

State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology of Materials, Beijing University of Chemical Technology, Beijing, 10029, P.R. China.

Lithium metal batteries (LMBs) have emerged as the most promising candidate for next-generation high-energy-density energy storage systems. However, their practical implementation is hindered by the inability of conventional carbonate electrolytes to simultaneously stabilize the lithium metal anode and LiNiCoMnO (NCM811) cathode interfaces, particularly under extreme operating conditions. Herein, we present a transformative molecular design using 3,5-difluorophenylboronic acid neopentyl glycol ester (DNE), which uniquely integrates dual interfacial stabilization mechanisms in a single molecule.

View Article and Find Full Text PDF

Fluorinated Imidazolidinium Cations as a Fluorine-Lean Interface Repairing Agent for Li-Metal Batteries.

ACS Appl Mater Interfaces

September 2025

Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai 200433, China.

Li-metal batteries promise ultrahigh energy density, but their application is limited by Li-dendrite growth. Theoretically, fluorine-containing anions such as bis(fluorosulfonyl)imide (FSI) in electrolytes can be reduced to form LiF-rich solid-electrolyte interphases (SEIs) with high Young's modulus and ionic conductivity that can suppress dendrites. However, the anions migrate toward the cathode during the charging process, accompanied by a decrease in the concentration of interfacial anions near the anode surface.

View Article and Find Full Text PDF

Electrolytes are important components in lithium-ion batteries. However, battery degradation due to irreversible electrochemical reactions in the electrolyte can consume electrolyte molecules and severely reduce its effective operation lifetime. It is hence important to study the electrochemical reaction pathways in the battery electrolyte to further improve lithium-ion battery reliability.

View Article and Find Full Text PDF

Electrolyte-Driven Cu Substitution in MoSe: Synergy of an Inorganic-Rich Solid Electrolyte Interphase and Thermal Activation for Sodium-Ion Batteries.

ACS Nano

September 2025

Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.

Transition metal chalcogenides (TMCs) have garnered significant attention as high-capacity anode materials, yet the unconventional role of the Cu collector meditating atomic-level substitution of metal-site cations by Cu ions during electrochemical cycling remains mechanistically unclear. To address this, herein, Cu-doped MoSe@C ultrathin nanosheets were synthesized via the solvothermal process and carbonization strategies. A systematic investigation was conducted to elucidate the underlying driving forces for Cu substitution at Mo sites and the crucial regulatory effects of solid electrolyte interphase (SEI) formation.

View Article and Find Full Text PDF

This study pioneers the use of organic nitrate C(NH)NO as an electrolyte additive in lithium metal batteries (LMBs). C(NH)NO can effectively construct a high-quality solid electrolyte interphase (SEI) on the lithium metal anode, thereby enabling dendrite-free and uniform spherical lithium (Li) deposition.

View Article and Find Full Text PDF