Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: The genomic effects of biomechanical loading on human growth plate cartilage are unknown so far. To address this, we used rare human growth plate biopsies obtained from children undergoing epiphysiodesis and exposed them to precisely controlled mechanical loading using a microloading device. The biopsies were cultured 24 hours after mechanical loading, followed by RNA-sequencing analyses to decipher the genomic regulation.

Design: We conducted RNA-seq analysis of human growth plate cartilage obtained from three patients cultured and subjected to cyclical mechanical loading with peak 0.4 N with frequency 0.77 Hz during a 30-second duration, using a specialized microloading device.

Results: Gene ontology analysis revealed novel data showing three significantly upregulated signaling pathways, including notch, oxytocin, and tight junction, and three significantly downregulated signaling pathways, including lysosome, sphingolipid metabolism, and peroxisome proliferator-activated receptor (PPAR) in human growth plate cartilage. Moreover, we found 15 significantly regulated genes within these signaling pathways from all three patients. These genes included PSEN2, HEY1, and NCOR2 from the notch signaling; CACNB1 and PPP3R2 from the oxytocin signaling; ACTR3C, WHAMM, and ARHGEF18 from the tight junction signaling; ARSA, SMPD1, and CD68 from the lysosome signaling; ARSA and SMPD1 from the sphingolipid metabolism signaling; and SLC27A4 and AQP7 from the PPAR signaling pathway. In addition, 20 significantly upregulated genes and six significantly downregulated genes shared between two patient samples were identified.

Conclusion: Our study provides the first-ever transcriptomic data of mechanical loading of human growth plate cartilage. These findings can potentially provide genetic targets for future investigations in physiological and pathological bone growth conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11629350PMC
http://dx.doi.org/10.1177/19476035241302954DOI Listing

Publication Analysis

Top Keywords

human growth
24
growth plate
24
plate cartilage
20
mechanical loading
16
signaling pathways
12
signaling
9
genomic effects
8
effects biomechanical
8
biomechanical loading
8
loading human
8

Similar Publications

Roles of Extracellular Superoxide Dismutase in Regulating Cell Migration and Vesicle Trafficking in Dictyostelium and Mammalian Cells.

Dev Growth Differ

September 2025

Department of Biological Sciences, College of Arts, Sciences, and Education, Florida International University, Miami, Florida, USA.

Superoxide dismutases (SODs) are key regulators of reactive oxygen species (ROS) and redox balance. Although intracellular SODs have been extensively studied, growing attention has been directed toward understanding the roles of extracellular SODs in both Dictyostelium and mammalian systems. In Dictyostelium discoideum, SodC is a glycosylphosphatidylinositol (GPI)-anchored enzyme that modulates extracellular superoxide to regulate Ras, PI3K signaling, and cytoskeletal remodeling during directional cell migration.

View Article and Find Full Text PDF

Colorectal cancer ranks among the most prevalent and lethal malignant tumors globally. Historically, the incidence of colorectal cancer in China has been lower than that in developed European and American countries; however, recent trends indicate a rising incidence due to changes in dietary patterns and lifestyle. Lipids serve critical roles in human physiology, such as energy provision, cell membrane formation, signaling molecule function, and hormone synthesis.

View Article and Find Full Text PDF

Street-level environments play a vital role in children's development by promoting their physical activity, cognitive growth, and overall development. This study systematically reviews the measurement tools available to assess street environments according to children's needs. This systematic review was conducted according to the PRISMA-COSMIN guidelines.

View Article and Find Full Text PDF

IL12-based phototherapeutic nanoparticles through remodeling tumor-associated macrophages combined with immunogenic tumor cell death for synergistic cancer immunotherapy.

Biomater Sci

September 2025

Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, The Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, 300192, China.

Various cancer therapeutic strategies have been designed for targeting tumor-associated macrophages (TAMs), but TAM reprogramming-based monotherapy is often clinically hindered, likely due to the lack of a coordinated platform to initiate T cell-mediated immunity. Herein, we fabricated reactive oxygen species (ROS)-responsive human serum albumin (HSA)-based nanoparticles (PEG/IL12-IA NPs) consisting of indocyanine green (ICG), arginine (Arg), and interleukin 12 (IL12). Upon laser irradiation, the nanoparticles were found to be able to dissociate, thus facilitating the release of IL12.

View Article and Find Full Text PDF

Oligomeric proanthocyanidins (OPCs), condensed tannins found plentiful in grape seeds and berries, have higher bioavailability and therapeutic benefits due to their low degree of polymerization. Recent evidence places OPCs as effective modulators of cancer stem cell (CSC) plasticity and tumor growth. Mechanistically, OPCs orchestrate multi-pathway inhibition by destabilizing Wnt/β-catenin, Notch, PI3K/Akt/mTOR, JAK/STAT3, and Hedgehog pathways, triggering β-catenin degradation, silencing stemness regulators (OCT4, NANOG, SOX2), and stimulating tumor-suppressive microRNAs (miR-200, miR-34a).

View Article and Find Full Text PDF